久久国产成人av_抖音国产毛片_a片网站免费观看_A片无码播放手机在线观看,色五月在线观看,亚洲精品m在线观看,女人自慰的免费网址,悠悠在线观看精品视频,一级日本片免费的,亚洲精品久,国产精品成人久久久久久久

分享

MYB轉(zhuǎn)錄因子調(diào)控植物花青素生物合成的研究進(jìn)展

 撼三 2022-12-13 發(fā)布于遼寧

趙海菲 王天婭 余坤江 晏偉 王顯亞 田恩堂

摘要:MYB轉(zhuǎn)錄因子是植物重要的調(diào)控因子,可與bHLH和WD40類轉(zhuǎn)錄因子形成二元MYB-bHLH或三元MBW復(fù)合體,,對植物花青素合成與積累起著至關(guān)重要的作用,。本文綜述了花青素合成途徑、MYB轉(zhuǎn)錄因子類型,、MYB轉(zhuǎn)錄因子正向及負(fù)向調(diào)控,、MYB轉(zhuǎn)錄因子調(diào)控機(jī)制等方面的研究進(jìn)展,并對相關(guān)后續(xù)研究進(jìn)行了探討與展望,。本綜述可為花青素生物合成機(jī)制研究提供參考,。

關(guān)鍵詞:MYB;轉(zhuǎn)錄因子;花青素;生物合成

中圖分類號:S188文獻(xiàn)標(biāo)識碼:A

文章編號:1008-0457(2022)03-0049-08國際DOI編碼:10.15958/j.cnki.sdnyswxb.2022.03.007

花青素(Anthocyanin)是絕大多數(shù)植物自身合成的水溶性天然色素,能使其葉、花,、莖,、果實(shí)和種皮等呈現(xiàn)出豐富的色彩,具有重要的商業(yè)價值,?;ㄇ嗨卦谥参锷L發(fā)育中行使多種重要的生理功能:作為媒介吸引昆蟲傳粉和散播種子[1];在營養(yǎng)組織中,病原體侵襲,、強(qiáng)光,、低溫和磷酸鹽缺乏等可引起花青素的聚集,可能與相關(guān)的防御機(jī)制有關(guān)[2];花青素可抵御紫外輻射,,發(fā)揮UV屏障的功能,,保護(hù)植物DNA不受破壞、維持細(xì)胞分化和其它生命過程正常進(jìn)行 [3];作為有效的抗氧化劑,,花青素能有效清除自由基和活性氧(ROS)[4-6];花青素也可在保護(hù)人體健康,,預(yù)防心血管疾病、抗癌和抵抗其它一些慢性疾病中發(fā)揮重要作用[7-9];此外,,富含花青素的食品,、化妝品及醫(yī)療保健品等擁有廣闊的消費(fèi)市場[10]。因此,,全面了解花青素生物合成及調(diào)控對于開發(fā)富含花青素相關(guān)產(chǎn)品具有重要意義,。

大多數(shù)植物的花、葉,、莖等組織器官的顏色極大程度上受花青素生物合成途徑的遺傳與調(diào)控機(jī)制的影響,。在植物中,,花青素合成結(jié)構(gòu)基因和調(diào)節(jié)基因共同調(diào)控完成花青素的生物合成途徑,。該調(diào)控主要作用于結(jié)構(gòu)基因的轉(zhuǎn)錄過程中,且由MYB,、bHLH和WD40等多種轉(zhuǎn)錄因子的協(xié)同完成,,其中以MYB轉(zhuǎn)錄因子研究的最多也最為重要。

1花青素合成途徑

植物花青素合成途徑隸屬于類黃酮途徑的一條重要分支,,主要在細(xì)胞質(zhì)和內(nèi)質(zhì)網(wǎng)上合成花青素再運(yùn)輸?shù)揭号葜泄潭ê蛢Υ?。結(jié)構(gòu)基因編碼了一系列與花青素緊密相關(guān)的生物合成酶,通過各類轉(zhuǎn)錄因子的催化作用合成花青素[11-13],。植物中花青素生物合成途徑是黃酮類代謝途徑中的一個分支,,它的前體是從苯丙氨酸開始。苯丙氨酸途徑包含三個主要基因,,分別是PAL(苯丙氨酸氨解酶),、C4H(肉桂酸酯-4-羥化酶)和4CL(4-香豆酸酯:CoA連接酶)。植物花青素生物合成途徑可分為兩種類型的相關(guān)結(jié)構(gòu)基因:早期生物合成基因(EBGs)和晚期生物合成基因(LBGs)[14],。EBG包括CHS(查爾酮合酶),、CHI(查爾酮異構(gòu)酶),、F3H(黃酮3-羥化酶)、F3′H(類黃酮3′-羥化酶)和FLS(類黃酮合成酶),,協(xié)同導(dǎo)致類黃酮和其他類黃酮化合物的生成;而LBG則包括DFR(二氫類黃酮4-還原酶),、ANS(原花青素合成酶)和UFGT(UDP-葡萄糖:類黃酮3-O-葡萄糖基轉(zhuǎn)移酶),最終導(dǎo)致花青素的生成[15-16],。以模式植物—擬南芥花青素生物合成代謝途徑為例[13],,第I階段,以苯丙氨酸為直接前體,,經(jīng)PAL,、C4H和4CL的三步酶促反應(yīng)作用下合成4-香豆酰CoA;第II階段是4-香豆酰CoA通過CHS、CHI,、F3H和F3′H基因活性的調(diào)控產(chǎn)生二氫黃酮醇的過程;第III階段是二氫黃酮醇在DFR,、ANS、LDOX,、MT,、GT和AT的催化作用下生成花青素的過程。上述結(jié)構(gòu)基因的表達(dá)在轉(zhuǎn)錄水平上均受多種轉(zhuǎn)錄因子調(diào)控,。

2MYB轉(zhuǎn)錄因子

植物中花青素生物合成代謝途徑主要受到由R2R3-MYB,、bHLH和WD40蛋白組成的MBW轉(zhuǎn)錄復(fù)合物的控制[12,17],。其中,,MYB轉(zhuǎn)錄因子是MBW復(fù)合物的主要決定性調(diào)節(jié)因子[18-19]。植物界的MYB類轉(zhuǎn)錄因子中數(shù)量最多的是R2R3-MYB[20],。擬南芥共發(fā)現(xiàn)300多個MYB轉(zhuǎn)錄因子,,其中有137個屬于R2R3-MYB[20]。R2R3-MYB轉(zhuǎn)錄因子通過N端與靶序列的DNA結(jié)合域特異性結(jié)合實(shí)現(xiàn)在植物花青素生物合成的轉(zhuǎn)錄調(diào)控過程中對靶基因的精確調(diào)控,。此外,,MYB轉(zhuǎn)錄因子的C端存在與DNA結(jié)合的轉(zhuǎn)錄激活或抑制功能域[21],例如薔薇科植物與花青素生物合成相關(guān)的MYB蛋白的C端包含一段特定的基序[22],。根據(jù)它們的C末端的氨基酸基序,,Stracke等[23]將它們分為22個亞組。其中參與黃酮類化合物生物合成的MYB蛋白屬于1~7個亞組,,可為相同亞組未知蛋白的功能預(yù)測提供參考,。可以通過系統(tǒng)進(jìn)化分析確定在植物花青素合成過程中起激活或抑制作用的MYB類型[24],。

在擬南芥全部組織中,,Stracke等[25]發(fā)現(xiàn)AtMYB11、AtMYB12和AtMYB111對參與花青素生物合成的EBGs基因進(jìn)行調(diào)控。AtMYB75,、AtMYB90,、AtMYB113和AtMYB114轉(zhuǎn)錄因子基因?qū)⑴c花青素生物合成的LBGs基因進(jìn)行調(diào)控[26]。此外,,擬南芥的R2R3-MYB家族基因還檢測到PAP1,、PAP2、MYB113和MYB114[26-27]等轉(zhuǎn)錄因子,,它們的時間和空間表達(dá)模式?jīng)Q定了花青素的模式和定位,。Wang等[28-29]在蘋果中克隆了MdMYB12、MdMYB22和MdMYBPA1基因,,并通過蘋果愈傷組織過表達(dá)和擬南芥突變體異位表達(dá)確認(rèn)它們在花青素生物合成途徑中的作用,,為選育高含量花青素的優(yōu)質(zhì)蘋果提供了科學(xué)依據(jù)。Xu等[30]和Xu等[31]利用異位表達(dá)和敲除試驗(yàn)從紫色胡蘿卜品種中分離并驗(yàn)證了DcMYB6和DcMYB7(R2R3-MYB類轉(zhuǎn)錄因子),,并證實(shí)它們是決定胡蘿卜中花青素合成的關(guān)鍵基因,。

3MYB轉(zhuǎn)錄因子轉(zhuǎn)錄調(diào)控

3.1MYB正調(diào)控因子研究

在類黃酮生物合成代謝過程中生成了黃酮醇,花青素和原花青素等多種化合物,。研究表明,,這些類黃酮途徑受到MYB轉(zhuǎn)錄因子的微調(diào)和嚴(yán)格控制[12,32],。在玉米花青素生物合成過程中,,R和C1兩類轉(zhuǎn)錄因子均能正調(diào)控其相關(guān)合成酶基因的表達(dá)[33]。深入研究表明,,在水稻中轉(zhuǎn)入玉米R和C1同時進(jìn)行過量表達(dá)后,,水稻中CHS基因的轉(zhuǎn)錄效率相應(yīng)得到迅速提升,由此可知其極有可能通過對CHS基因的表達(dá)量進(jìn)行上調(diào),,來促進(jìn)植物組織中花青素的生物合成[34],。另外,研究發(fā)現(xiàn)通過過表達(dá)的方式,,擬南芥PAP1-D轉(zhuǎn)錄因子對花青素合成途徑中多個基因的表達(dá)量和表達(dá)強(qiáng)度進(jìn)行上調(diào),,能達(dá)到明顯增加花青素的積累量的效果[27],。其他研究也發(fā)現(xiàn),,隸屬于MYB家族的PAP1基因過表達(dá)同樣能夠提高擬南芥組織中的花青素含量[35]。劉軼等[36]將過表達(dá)AtPAP1基因轉(zhuǎn)入野生型煙草,,發(fā)現(xiàn)花青素調(diào)控基因AtPAP1基因通過異源過量表達(dá)的方式可達(dá)到顯著促進(jìn)轉(zhuǎn)基因煙草植株花青素生物合成的目的,,結(jié)果導(dǎo)致轉(zhuǎn)基因煙草的葉片、莖段和花器官等呈現(xiàn)出不同程度的紫紅色,。大量研究也表明,,AtPAP1(AtMYB75)及其同源物可通過激活結(jié)構(gòu)基因的表達(dá)來正調(diào)節(jié)花青素的產(chǎn)生[37-38]。調(diào)控基因AtMYB75、AtMYB90,、AtMYB113和AtMYB114均屬于擬南芥MYB家族的第6亞組,,通過在轉(zhuǎn)錄過程中對結(jié)構(gòu)基因的表達(dá)強(qiáng)度進(jìn)行上調(diào),以促進(jìn)植物組織中的花青素含量的積累[39],。

對被子植物不同物種中MYB基因家族第6亞組的研究顯示,,它們通常通過表達(dá)的方式以及改變激活強(qiáng)度的程度來調(diào)控花青素積累量[1,40],。Su等[41]研究發(fā)現(xiàn)MYB轉(zhuǎn)錄因子的高水平表達(dá)導(dǎo)致萵苣葉中花青素的高水平積累,。在花椰菜、橘子和水稻中也報道了類似的結(jié)果[42-44],。在蘋果MYB轉(zhuǎn)錄因子的研究中,,MdMYB9在其原花青素合成途徑中發(fā)揮正向調(diào)控功能,在楊樹中PtMYB134轉(zhuǎn)錄作用與MdMYB9正調(diào)控因子的功能類同,,均能對花青生成途徑的還原酶(ANR)啟動子產(chǎn)生激活效應(yīng),,從而對蘋果和楊樹中花青素含量變化進(jìn)行正向調(diào)控[45]。R2R3-MYB轉(zhuǎn)錄因子中第4家族的 Rh-MYBs4-1基因和第6家族RhMYBs6-1基因,,二者協(xié)同調(diào)控可增加月季中花青素的合成[46],。在黃酮類化合物的生物合成過程中,激活型轉(zhuǎn)錄因子如AtMYB46和AtMYB83具有正調(diào)控功能,,在山楂中克隆的MYB46與這兩類轉(zhuǎn)錄因子同源關(guān)系較近,,其具有高度保守的R2R3功能域,由此推測山楂MYB46可能具有相似的正調(diào)控功能特征[47],。在小麥花青素合成途徑中,,CHS、DFR,、LDOX和UF3GT基因的啟動子與正調(diào)控因子TaPL1結(jié)合共同促進(jìn)花青素含量的積累[48],。紫粒小麥高原115中MYB轉(zhuǎn)錄因子TaMYB3-4Ata被克隆,并正式與花青素積累有關(guān)[49],。在高粱中,,MYB基因、yellow seed 1基因缺失可導(dǎo)致其種子呈現(xiàn)黃色[50],。Matus等[51]發(fā)現(xiàn)在葡萄花青素合成途徑中,,R2R3-MYB轉(zhuǎn)錄因子VvMYBA1、VvMYBA6和VvMYBA7基因,,均可通過對關(guān)鍵酶基因3AT和UFGT產(chǎn)生激活效應(yīng),,正向調(diào)控其花青素生物合成。

3.2MYB負(fù)調(diào)控因子研究

MYB轉(zhuǎn)錄因子除了花青素生物合成的激活因子外,,還發(fā)現(xiàn)兩種轉(zhuǎn)錄抑制花青素生成的MYB[52]:R2R3-MYB和R3-MYB,。

R2R3-MYB可減少植物花,、莖、葉等組織器官中花青素生物合成與積累,,該類轉(zhuǎn)錄因子先后在金魚草(AmMYB30)[53],、矮牽牛(PhMYB27)[52]、草莓(FaMYB1和FcMYB1)[54-55],、葡萄(VvMYBC2-L1/3和VvMYB4-like)[56-57],、楊樹(PtrMYB182和PtrMYB 57)[58-59]、桃(PpMYB17-20)[60],、蘋果(MdMYB16和MdMYB15L)[30,,61]和中國水仙(NtMYB2)[62]等植物中被檢測到。分析發(fā)現(xiàn)這些轉(zhuǎn)錄抑制因子都屬于R2R3-MYB的亞組4,,其在煙草中的異位表達(dá)造成花青素生物合成受到阻抑而導(dǎo)致花朵顏色的喪失[53-54,,56-57]。同樣,,在楊樹中PtrMYB57的過表達(dá)抑制了花青素含量的積累,。相比之下,CRISPR/Cas9系統(tǒng)產(chǎn)生的Ptrmyb57突變體中花青素含量增加[59],。因此,,遺傳、生化和細(xì)胞生物學(xué)證據(jù)表明,,這些抑制因子是多維調(diào)節(jié)網(wǎng)絡(luò)的一部分,,可負(fù)調(diào)節(jié)與環(huán)境刺激或發(fā)育過程相關(guān)的花青素生物合成[63]。

除了R2R3-MYB轉(zhuǎn)錄因子能抑制植物花青素合成積累外,, R3-MYB轉(zhuǎn)錄因子也是在植物花青素生物合成過程中表現(xiàn)出負(fù)調(diào)控功能的轉(zhuǎn)錄抑制因子,。在擬南芥花青素合成中在AtMYBL2和AtCPC負(fù)調(diào)控因子作用下,導(dǎo)致擬南芥體內(nèi)花青素的積累量減少[13,,64];MYBL2通過與R2R3-MYBs競爭來與mbw復(fù)合物的bHLH組分相互用來負(fù)調(diào)控mbw復(fù)合物[64],。隨后,矮牽牛中PhMYBx,、龍膽中GtMYB1R1和GtMYB1R9,、楊樹中PtrRML1以及番茄中SlMYBATV和SlTRYs也被確定為負(fù)調(diào)控因子[52,65-67],。最近有報道稱,,一種新型的R3-MYB轉(zhuǎn)錄抑制因子IlMYBL1參與了Iochroma中花朵顏色的喪失[68]。與之相比,,Song等[69]認(rèn)為紫甘藍(lán)變種是由于啟動子的替換或基因的缺失導(dǎo)致BoMYBL2-1表達(dá)的缺失引起的,。大量證據(jù)揭示,,R3-MYB與R2R3-MYB兩類抑制因子對花青素的生物合成的負(fù)調(diào)節(jié)作用呈平行關(guān)系,。

3.3MYB轉(zhuǎn)錄因子的調(diào)控途徑機(jī)制

3.3.1MYB激活因子和抑制因子按層次結(jié)構(gòu)運(yùn)行花青素調(diào)節(jié)網(wǎng)絡(luò)是分層組織的[52],。正負(fù)MYB調(diào)節(jié)子之間表達(dá)水平的相互控制形成一個復(fù)雜的調(diào)節(jié)環(huán),轉(zhuǎn)錄調(diào)節(jié)環(huán)由AtMYBL2,、AtTT8和PAP1組成,,三者調(diào)節(jié)擬南芥中的花青素生物合成,PAP1激活A(yù)tTT8的正調(diào)節(jié)劑,,AtTT8是AtMYBL2的激活因子,,而AtMYBL2則負(fù)調(diào)節(jié)AtTT8的表達(dá)[64],以調(diào)控花青素的生物合成,。之前的研究,,提出了MYB激活因子和抑制因子之間的三個作用水平:激活因子誘導(dǎo)抑制因子;抑制因子抑制抑制因子;抑制因子阻遏激活因子[54]。Albert等[52]在矮牽牛葉片中發(fā)現(xiàn)過表達(dá)花青素激活因子DPL和PHZ后,,誘導(dǎo)了PhMYB27和PhMYBx抑制因子,。同樣,在過表達(dá)PtrMYB134激活因子的毛狀根中發(fā)現(xiàn)了PtrMYB182抑制因子的誘導(dǎo)[58],。值得注意的是,,MYB抑制因子的作用會受到自動抑制或MYB抑制因子其他成員的抑制。PhMYBx和PhMYB27本身被鑒定為矮牽牛中PhMYB27的靶基因,,表明它們都被MBW復(fù)合物激活和抑制[52],。在VvMYBC2-L3轉(zhuǎn)基因葡萄的毛狀根中也觀察到VvMYBC2-L1的下調(diào)[56]。這種作用水平是有待闡明的間接調(diào)節(jié)或直接抑制,。因此,,MYB抑制因子似乎被MBW復(fù)合物轉(zhuǎn)錄激活,并同時在反饋機(jī)制自身的阻遏下被激活[70],。關(guān)于抑制子在激活子上的轉(zhuǎn)錄層次,,Matsui等[64]發(fā)現(xiàn)擬南芥AtMYBL2除對花青素生物合成基因進(jìn)行負(fù)調(diào)控之外還抑制AtTT8的表達(dá)。抑制作用還可以通過MYB激活因子的下調(diào)來發(fā)揮作用[71],。MYB抑制因子可能間接起到抑制編碼bHLH和MYB激活子的基因表達(dá)的作用,,從而破壞MBW轉(zhuǎn)錄激活復(fù)合物。

3.3.2花青素調(diào)節(jié)的綜合模型

近年來,,花青素生物合成的調(diào)控機(jī)制等方面的研究在模式植物和園藝作物中取得突破性進(jìn)展,。以是否促進(jìn)植物花青素含量積累為區(qū)分依據(jù),可將花青素合成途徑的轉(zhuǎn)錄調(diào)控作用分為正調(diào)控和負(fù)調(diào)控兩類,。MYB和bHLH兩種轉(zhuǎn)錄因子相互結(jié)合組成的MYB-bHLH的復(fù)合體或MYB,、bHLH和WD40三種轉(zhuǎn)錄因子形成的MBW復(fù)合體,通過與花青素合成相關(guān)的結(jié)構(gòu)基因特定部位相結(jié)合,,同時改變結(jié)構(gòu)基因的活性,,達(dá)到促進(jìn)花青素合成的為正調(diào)控過程,起到抑制或減少花青素積累的是負(fù)調(diào)控過程,。Albert等[52]建立了一個模型來描述MBW復(fù)合物的激活因子和阻遏因子對花青素生物合成的作用,。在非誘導(dǎo)條件下,,R2R3-MYB激活因子不表達(dá),MYB抑制因子高度表達(dá),,bHLH1和WDR則組成型表達(dá),。MYB抑制因子可以直接抑制花青素生物合成基因,或通過結(jié)合游離的bHLHs來破壞MBW復(fù)合物的形成,,從而達(dá)到抑制花青素的生物合成的目的(圖1-a),。

在誘導(dǎo)條件下,通過激活R2R3-MYB激活因子的表達(dá)花青素的生物合成開始,。R2R3-MYB激活因子與bHLH1(PhJAF13/AtEGL3同源物)和WDR相互作用,,形成MBW激活復(fù)合物,可激活bHLH2的表達(dá)(PhAN1/AtTT8同源物),。然后,,bHLH2能夠與R2R3-MYB激活因子和WDR形成核心MBW激活復(fù)合物,激活花青素生物合成基因(例如DFR)的表達(dá),,進(jìn)而促進(jìn)花青素含量的積累,。核心MBW激活復(fù)合物還激活bHLH2的表達(dá)以提供增強(qiáng)作用,而R2R3-MYB抑制因子和R3-MYB抑制因子的表達(dá)則提供反饋抑制作用(圖1-b),。

4總結(jié)與展望

激活和抑制兩類因子協(xié)同表達(dá)使其花青素生物合成在植物生長發(fā)育和抵抗生理脅迫過程中發(fā)揮重要調(diào)控作用,。在小麥作物中DFR、UF3GT,、LDOX和CHS基因的啟動子與TaPL1因子相結(jié)合,,從而對花青素合成進(jìn)行正向調(diào)控;而TaMyb1D因子在花青素合成過程中發(fā)揮負(fù)調(diào)控作用,同時增強(qiáng)了植物的抗旱能力以及抵御氧化等環(huán)境脅迫[48],。在楊樹的瞬時轉(zhuǎn)錄激活試驗(yàn)中,,PtMYB134作為類黃酮合成通路酶基因啟動子的激活因子,而PtMYB165和PtMYB194則通過抑制PtMYB134的表達(dá)以達(dá)到降低花青素含量的目的,,楊樹中的PtMYB134,、PtMYB165和PtMYB194三者過表達(dá)均能大幅度減少花青素和原花青素等化合物的生成量[58]。而研究表明桃子中的PpMYB10.1與PpMYBPA1都對PpMYB18蛋白的轉(zhuǎn)錄過程起到激活作用,,使抑制因子PpMYB18與MYB激活因子形成相互競爭,,并與bHLH轉(zhuǎn)錄因子bHLH3和bHLH33相結(jié)合,激活花青素合成調(diào)控途徑的反饋調(diào)節(jié)環(huán),,從而使花青素和原花青素的合成量達(dá)到平衡狀態(tài)[72],。在番茄中,R3-MYB抑制因子SlMYBATV被核心MBW激活復(fù)合物靶向,,同時其自身也被自動調(diào)節(jié)以提供反饋抑制作用[70],。因此,結(jié)合了MBW活化復(fù)合物和多個負(fù)調(diào)節(jié)劑的拮抗機(jī)制可以促進(jìn)對花青素生物合成的微調(diào),,并保護(hù)植物免受過量花青素的積累,。

綜上所述,,導(dǎo)致花青素生物合成的任何基因的功能喪失和突變都有可能減弱植物中花青素含量的積累。例如,,研究發(fā)現(xiàn)ANS基因突變阻止了無色類黃酮花青素向下游有色產(chǎn)物的轉(zhuǎn)化[41],。此外,,功能缺失的等位基因可能來自不同類型的突變,,例如引起移碼的插入缺失(InDel)[73]。因此,,在自然界中可能會經(jīng)常發(fā)生減弱花青素含量積累的突變,。相反,花青素積累的突變相對較少,。此外,,如果功能獲得突變影響途徑中的限速步驟,則單個基因中的功能獲得突變將會影響特定生物合成途徑最終產(chǎn)物的積累(例如花青素生物合成途徑),。而 R2R3-MYB轉(zhuǎn)錄因子可以調(diào)節(jié)花青素生物合成的整個途徑,,其功能獲得突變比編碼生物合成酶的基因突變更可能普遍地促進(jìn)最終產(chǎn)物的高水平積累。

(責(zé)任編輯:段麗麗)

參考文獻(xiàn):

[1]Davies K M,,Albert N W,,Schwinn K E.From landing lights to mimicry:the molecular regulation of flower colouration and mechanisms for pigmentation patterning[J].Functional Plant Biology,2012,,39(8):619-638.

[2]Dixon R A.Stress-induced phenylpropanoid metabolism[J].The Plant Cell Online,,1995,7(7):1085-1097.

[3]Tanaka Y,,Ohmiya A.Seeing is believing:engineering anthocyanin and carotenoid biosynthetic pathways[J].Current Opinion in Biotechnology,,2008,19(2):190-197.

[4]Albert N W,,Lewis D H,,Zhang H,et al.Light-induced vegetative anthocyanin pigmentation in Petunia[J].Journal of Experimental Botany,,2009,,60(7):2191-2202.

[5]董穎蘋,李裕榮,,宋吉軒,,等.貴州本土紫色馬鈴薯選育研究初報[J].種子,2008,,27(11):115-116.

[6]Gould K S.Nature′s swiss army knife:the diverse protective roles of anthocyanins in leaves[J].Journal of Biomedicine and Biotechnology,,2004(5):314-320.

[7]Butelli E,Licciardello C,,Zhang Y,,et al.Retrotransposons control fruit-specific,,cold-dependent accumulation of anthocyanins in blood oranges[J].The Plant Cell,2012,,24(3):1242-1255.

[8]Hou D X.Potential mechanisms of cancer chemoprevention by anthocyanins[J].Current Molecular Medicine,,2003,3(2):149.

[9]Martin C,,Butelli E,,Petroni K,et al.How can research on plants contribute to promoting human health,?[J].The Plant Cell,,2011,23(5):1685-1699.

[10]Tsuda T.Dietary anthocyanin-rich plants:biochemical basis and recent progress in health benefits studies[J].Molecular Nutrition & Food Research,,2012,,56(1):159-170.

[11]龐紅霞,祝長青,,覃建兵.植物花青素生物合成相關(guān)基因研究進(jìn)展[J].種子,,2010,29(3):60-64.

[12]Koes R,,Verweij W,,Quattrocchio F.Flavonoids:a colorful model for the regulation and evolution of biochemical pathways[J].Trends in Plant Science,2005,,10(5):236-242.

[13]Dubos C,,José L G,Baudry A,,et al.MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana[J].The Plant Journal,,2008,55(6):940-953.

[14]Petroni K,,Tonelli C.Recent advances on the regulation of anthocyanin synthesis in reproductive organs[J].Plant Science,,2011,181(3):219-229.

[15]Lepiniec L,,Debeaujon I,,Routaboul J M,et al.Genetics and biochemistry of seed flavonoids[J].Annual Review of Plant Biology,,2006,,57(1):405-430.

[16]Saito K,Yonekura-Sakakibara K,,Nakabayashi R,,et al.The flavonoid biosynthetic pathway in Arabidopsis:structural and genetic diversity[J].Plant Physiology and Biochemistry,2013,72:21-34.

[17]Xu W,,Dubos C,,Lepiniec L.Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J].Trends in Plant Science,2015,,20(3):176-185.

[18]Lai B,,Li X J,Hu B,,et al.LcMYB1 is a key determinant of  differential anthocyanin accumulation among Genotypes,,tissues,developmental phases and ABA and light stimuli in litchi chinensis[J].PLoS One,,2014,,9(1):e86293.

[19]Jin W,,Wang H,,Li M,et al.The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunus avium L.)[J].Plant Biotechnology Journal,,2016,,14(11):2120-2133.

[20]Feller A,Machemer K,,Braun E L,,et al.Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J].The Plant Journal:For Cell and Molecular Biology,2011,,66(1):94-116.

[21]王萃鉑,,張瓚,張曉雪,,等.菊花轉(zhuǎn)錄因子CmMYB59的克隆與表達(dá)特性分析[J].南京農(nóng)業(yè)大學(xué)學(xué)報,,2016,39(1):63-69.

[22]Lin Wang K,,Bolitho K,,Grafton K,et al.An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae[J].BMC Plant Biology,,2010,,10(1):50.

[23]Stracke R,Werber M,,Weisshaar B.The R2R3-MYB gene family in Arabidopsis thaliana [J].Current Opinion in Plant Biology,,2001,4(5):447-456.

[24]Naing A H,,Kim C K.Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants[J].Plant Molecular Biology,,2018,98(1-2):1-18.

[25]Stracke R,Ishihara H,,Huep G,,et al.Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J].The Plant Journal,2007,,50(4):660-677.

[26]Gonzalez A,,Zhao M,Leavitt J M,,et al.Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings[J].The Plant Journal,,2008,53(5):814-827.

[27]Borevitz J O,,Xia Y,,Blount J,et al.Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis[J].The Plant Cell,,2000,,12(12):2383-2393.

[28]Wang N,Xu H,,Jiang S,,et al.MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f.niedzwetzkyana)[J].The Plant Journal,2017,,90(2):276-292.

[29]Wang N,,Qu C,Jiang S,,et al.The proanthocyanidin-specific transcription factor MdMYBPA1 initiates anthocyanin synthesis under low temperature conditions in red-fleshed apple[J].Plant Journal,,2018,96(1):39-55.

[30]Xu H,,Wang N,,Liu J,et al.The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes[J].Plant Molecular Biology,,2017,,94(1-2):149-165.

[31]Xu Z S,Yang Q Q,,F(xiàn)eng K,,et al.Changing carrot color :insertions in DcMYB7 alter the regulation of anthocyanin biosynthesis and modification[J].Plant Physiology,2019,,181(1):195-207.

[32]Liu C,,Long J,Zhu K,,et al.Characterization of a citrus R2R3-MYB transcription factor that regulates the flavonol and hydroxycinnamic acid biosynthesis[J].Scientific Reports,,2016,6(1):1-16.

[33]Broun P.Transcription factors as tools for metabolic engineering in plants[J].Current Opinion in Plant Biology,2004,,7(2):202-209.

[34]Gandikota M,,Kochko A D,Chen L,,et al.Development of transgenic rice plants expressing maize anthocyanin genes and increased blast resistance[J].Molecular Breeding,,2001,7(1):73-83.

[35]Cominelli E,,Gusmaroli G,,Allegra D,et al.Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana [J].Journal of Plant Physiology,,2008,,165(8):886-894.

[36]劉軼,鄭唐春,,代麗娟,,等.擬南芥AtPAP1基因植物表達(dá)載體構(gòu)建及在煙草中遺傳轉(zhuǎn)化分析[J].植物生理學(xué)報,2017,,53(7):1199-1207.

[37]Cutanda-Perez M C,,Agnès A,,Gomez C,,et al.Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport[J].Plant Molecular Biology,2009,,69(6):633-648.

[38]Rowan D D,,Cao M S,Wang K L,,et al.Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana[J].The New Phytologist,,2009,182(1):102-115.

[39]Dubos C,,Stracke R,,Grotewold E,et al.MYB transcription factors in Arabidopsis[J].Trends in Plant Science,,2010,,15(10):573-581.

[40]Liu J,Osbourn A,,Ma P.MYB Transcription factors as regulators of phenylpropanoid metabolism in plants[J].Molecular Plant,,2015,8(5):689-708.

[41]Su W,,Tao R,,Liu W,et al.Characterization of four polymorphic genes controlling red leaf color in lettuce that have undergone disruptive selection since domestication[J].Plant Biotechnology Journal,2019,,18(2):479-490.

[42]Butelli E,,Titta L,Giorgio M,,et al.Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors[J].Nature Biotechnology,,2008,26(11):1301-1308.

[43]Chiu L W,,Zhou X,,Burke S,et al.The purple cauliflower arises from activation of a MYB transcription factor[J].Plant Physiology,,2010,,154(3):1470-1480.

[44]Oikawa T,Maeda H,,Oguchi T,,et al.The birth of a black rice gene and its local spread by introgression[J].The Plant Cell,2015,,27(9):2401-2414.

[45]Gesell A,,Yoshida K,Tran L T,,et al.Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134[J].Planta,,2014,240(3):497-511.

[46]趙佳,,劉榮,,楊帆,等.月季花青素苷相關(guān) R2R3-MYB 蛋白基因的克隆和表達(dá)分析[J].中國農(nóng)業(yè)科學(xué),,2015,,48(7):1392-1404.

[47]蘇悅.山楂木質(zhì)素合成相關(guān)轉(zhuǎn)錄因子 MYB46 的基因克隆及功能驗(yàn)證[D].沈陽:沈陽農(nóng)業(yè)大學(xué),2016.

[48]Shin D H,,Choi M G,,Kang C S,et al.A wheat R2R3-MYB protein PURPLE PLANT1 (TaPL1) functions as a positive regulator of anthocyanin biosynthesis[J].Biochemical and Biophysical Research Communications,,2016,,469(3):686-691.

[49]葉廣繼,張波,,陳文杰,,等.紫粒小麥高原115中R2R3-MYB轉(zhuǎn)錄因子TaMYB3-4A的克隆及功能分析[J].分子植物育種,2016,,14(8):1940-1947.

[50]Boddu J,,Svabek C,,Ibraheem F,et al.Characterization of a deletion allele of a sorghum Myb gene yellow seed1 showing loss of 3-deoxyflavonoids[J].Plant Science,,2005,,169(3),542-552.

[51]Matus J T,,Cavallini E,,Loyola R,et al.A group of grapevine MYBA transcription factors located in chromosome 14 control anthocyanin synthesis in vegetative organs with different specificities compared to the berry color locus[J].The Plant Journal,,2017,,91(2):220-236.

[52]Albert N W,Davies K M,,Lewis D H,,et al.A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots[J].The Plant Cell,2014,,26(3):962-980.

[53]Tamagnone L.The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco[J].Plant Cell Online,,1998,10(2):135-154.

[54]Aharoni A,,Vos C H R D,,Wein M,et al.The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco[J].The Plant Journal,,2001,,28(3):319-332.

[55]Salvatierra A,Pimentel P,,Moya-León M A,,et al.Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene[J].Phytochemistry,2013,,90:25-36.

[56]Cavallini E,Matus J T,,F(xiàn)inezzo L,,et al.The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in Grapevine[J].Plant Physiology,2015,,167(4):1448-1470.

[57]Pérez-Díaz J R,,Pérez-Díaz,J,,Madrid-Espinoza J,,et al.New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco[J].Plant Molecular Biology,2016,,90(1-2):63-76.

[58]Yoshida K,,Ma D,,Constabel C P.The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes[J].Plant Physiology,2015,,167(3):693-710.

[59]Wan S,,Li C,Ma X,,et al.PtrMYB57 contributes to the negative regulation of anthocyanin and proanthocyanidin biosynthesis in poplar[J].Plant Cell Reports,,2017,36(8):1263-1276.

[60]Zhou H,,Peng Q,,Zhao J,et al.Multiple R2R3-MYB transcription factors involved in the regulation of anthocyanin accumulation in peach flower[J].Frontiers in Plant Science,,2016,,7(28):1557.

[61]Xu H,Yang G,,Zhang J,,et al.Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus[J].Biochemical and Biophysical Research Communications,2018,,500(2):405-410.

[62]Muhammad A,,Guiqing W,Jiacheng W,,et al.Ectopic overexpression of a novel R2R3-MYB,,NtMYB2 from chinese narcissus represses anthocyanin biosynthesis in Tobacco[J].Molecules,2018,,23(4):781.

[63]Jun J H,,Liu C,Xiao X,,et al.The transcriptional repressor MYB2 regulates both spatial and temporal patterns of proanthocyandin and anthocyanin pigmentation in Medicago truncatula[J].Plant Cell,,2015,27(10):2860-2879.

[64]Matsui K,,Umemura Y,,Ohme-Takagi M.Atmybl2,a protein with a single MYB domain,,acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis [J].The Plant journal:for Cell and Molecular Biology,,2008,55(6):954-967.

[65]Zhu H F,,F(xiàn)itzsimmons K,,Khandelwal A,et al.CPC,,a single-repeat R3 MYB,,is a negative regulator of anthocyanin biosynthesis in Arabidopsis[J].Molecular Plant,,2009,2(4):790-802.

[66]Nakatsuka T,,Yamada E,,Saito M,et al.Heterologous expression of gentian MYB1R transcription factors suppresses anthocyanin pigmentation in tobacco flowers[J].Plant Cell Reports,,2013,,32(12):1925-1937.

[67]Tominaga-Wada R,Nukumizu Y,,Wada T.Tomato (Solanum lycopersicum) Homologs of TRIPTYCHON (S1TRY) and GLABRA3 (SlGL3) are involved in anthocyanin accumulation[J].Plant Signaling & Behavior,,2013,8(7):e24575.

[68]Gates D J,,Olson B J S C,,Clemente T E,et al.A novel R3 MYB transcriptional repressor associated with the loss of floral pigmentation in Iochroma[J].The New Phytologist,,2018,,217(3):1346-1356.

[69]Song H,Hur Y,,Lee M,,et al.Purple Brassica oleracea var.capitata F.rubra is due to the loss of BoMYBL2-1 expression[J].BMC Plant Biology,2018,,18(1):82.

[70]Colanero S,,Perata P,Gonzali S.The atroviolacea gene encodes an R3-MYB protein repressing anthocyanin synthesis in tomato plants[J].Frontiers in Plant Science,,2018(9):830.

[71]Huang Y F,,Vialet S,Guiraud J L.A negative MYB regulator of proanthocyanidin accumulation,,identified through expression quantitative locus mapping in thegrape berry[J].The New Phytologist,,2014,201(3):795-809.

[72]Zhou H,,Wang L K,,Wang F,et al.Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation[J].The New Phytologist,,2019,221(4):1919-1934.

[73]Tang Q,,Tian M,,An G,et al.Rapid identification of the purple stem (Ps) gene of Chinese kale (Brassica oleracea var.alboglabra) in a segregation distortion population by bulked segregant analysis and RNA sequencing[J].Molecular Breeding,,2017,,37(12):153.

Review of MYB Transcription Factors Regulating Anthocyanin Biosynthesis

Zhao Haifei,,Wang Tianya,Yu Kunjiang,,Yan Wei,,Wang Xianya,Tian Entang

(Agronomic college of Guizhou University,,Guiyang,,Guizhou 550025,China)

Abstract:MYB transcription factor is one important regulatory factor,,which could combine with bHLH and WD40 to form duality complex and ternary complexes.The complexes could improve the synthesis and accumulation of anthocyanin.The present study reviewed the pathways of anthocyanin synthesis,,the types of MYB transcription factors,the progress of the positive and negative of MYB synthesis and its mechanisms.In addition,,we discussed the current research progress and looked forward to its future researches.The review could provide reference information for studying the mechanisms of anthocyanin synthesis.

Keywords:MYB;transcription factors;anthocyanin;biosynthesis

    本站是提供個人知識管理的網(wǎng)絡(luò)存儲空間,,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn),。請注意甄別內(nèi)容中的聯(lián)系方式,、誘導(dǎo)購買等信息,謹(jǐn)防詐騙,。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,,請點(diǎn)擊一鍵舉報。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多