久久国产成人av_抖音国产毛片_a片网站免费观看_A片无码播放手机在线观看,色五月在线观看,亚洲精品m在线观看,女人自慰的免费网址,悠悠在线观看精品视频,一级日本片免费的,亚洲精品久,国产精品成人久久久久久久

分享

指南速遞 | SOGC指南:胎兒生長受限-單胎妊娠的篩查,、診斷和管理

 新用戶09758046 2023-11-29 發(fā)布于陜西

胎兒生長受限是一種常見的產(chǎn)科并發(fā)癥,最常見的原因是潛在的胎盤疾病,。胎兒生長的準(zhǔn)確評估是產(chǎn)前保健的核心目標(biāo),。“2023 SOGC臨床實(shí)踐指南:胎兒生長受限-單胎妊娠的篩查,、診斷和管理(No.442)”指南主要針對胎兒生長受限-單胎妊娠的篩查,、診斷和管理提供指導(dǎo)建議。


臨床實(shí)踐變更推薦


1.胎兒生長受限診斷主要用德爾斐(Delphi)共識的基于超聲標(biāo)準(zhǔn),,同時(shí)需要對早發(fā)(<32周)和晚發(fā)型(≥32周)胎兒生長受限作出區(qū)分,。

2.目前沒有足夠證據(jù)推薦常規(guī)使用阿司匹林來預(yù)防胎兒生長受限(對于缺乏早發(fā)子癇前期高危因素人群

3.胎兒生長評估建議通過基于無并發(fā)癥的胎兒超聲生長標(biāo)準(zhǔn),,不建議使用基于出生體重?cái)?shù)據(jù)的生長圖表,。

4.任何時(shí)候的有生機(jī)兒到36周,當(dāng)懷疑胎兒生長受限時(shí),,建議測量PIGF或者sFlt-1/PIGF,,以協(xié)助臨床醫(yī)生區(qū)分胎盤源性的胎兒生長受限、非胎盤因素相關(guān)的胎兒生長受限以及小于胎齡兒,。

5.在晚發(fā)胎兒生長受限監(jiān)測中,,大腦中動脈多普勒測量最好結(jié)合腦胎盤多普勒比值(大腦中動脈PI/臍動脈PI,CPR),。腦胎盤比值小于第5個(gè)百分位數(shù),,考慮異常、根據(jù)孕周,,這個(gè)發(fā)現(xiàn)可以有助于協(xié)助監(jiān)護(hù)或明確分娩指征,。



總結(jié)

1.對于臨床醫(yī)生來說,了解生長受限胎兒(FGR)和小于胎齡兒(SGA)之間的區(qū)別是很重要的,,因?yàn)镕GR會提高孕婦圍產(chǎn)期并發(fā)癥率和死亡率,,但SGA并不會。(證據(jù)質(zhì)量高)

2.SGA指的是胎兒經(jīng)超聲測得的腹圍(AC)或估測胎兒體重(EFW)低于給定參考范圍的第10百分位數(shù)或指嬰兒出生體重低于第10百分位數(shù),。(證據(jù)質(zhì)量高)

3.FGR指胎兒因潛在的病理而未達(dá)到其遺傳預(yù)期的生長潛能的情況,,多分為妊娠32周前罕見的早發(fā)型FGR(患病率0.5%),或更常見的妊娠32周及以后的晚發(fā)型FGR(患病率5%-10%),。(證據(jù)質(zhì)量中等)

4.FGR診斷主要采用Delphi共識的基于超聲標(biāo)準(zhǔn),。測量指標(biāo)因胎齡而異,包括胎兒大小,、胎兒生長情況以及臍動脈(UA),、子宮動脈(UtA)和大腦中動脈(MCA)多普勒異常。(證據(jù)質(zhì)量中等)

5.早發(fā)型FGR應(yīng)在妊娠32周前診斷出,同時(shí),,其依據(jù)應(yīng)至少滿足以下三個(gè)標(biāo)準(zhǔn)中的其中一個(gè):

(1)AC或EFW低于第3百分位數(shù),;

(2)UA多普勒評估中存在晚期不良變化(如臍動脈舒張末期血流缺失,AEDF或反向,,REDF等),;

(3)AC或EFW低于第10百分位數(shù),并伴有子宮動脈多普勒異常(UtA-PI>第95百分位數(shù))或UA多普勒異常(UA-PI>第95百分位數(shù)),。(證據(jù)質(zhì)量中等)

6.晚發(fā)型FGR應(yīng)在妊娠32周或之后診斷出,,其依據(jù)是AC或EFW低于第3百分位數(shù)或滿足以下3個(gè)標(biāo)準(zhǔn)中的至少2個(gè)標(biāo)準(zhǔn):

(1)AC或EFW低于第10百分位數(shù);

(2)AC或EFW超過2個(gè)四分位數(shù),;

(3)多普勒異常(UA-PI>第95百分位數(shù)或CPR<第5百分位數(shù))。(證據(jù)質(zhì)量中等)

7.在妊娠早期,,對于FGR的多模式評估比基于臨床危險(xiǎn)因素的更有效,。但由于加拿大在實(shí)行時(shí)發(fā)現(xiàn)流程過于復(fù)雜,故目前不推薦該法,。(證據(jù)質(zhì)量中等)

8.在妊娠中期,,超聲觀察組合(在胎兒解剖學(xué)超聲掃描中進(jìn)行)可能有助于早發(fā)型FGR的診斷。這些經(jīng)超聲檢測出的病理特征有:胎兒的生物測量評估值低于其胎齡標(biāo)準(zhǔn)值一周以上,、短股骨,、腸回聲、單臍動脈,、臍帶邊緣插入或帆狀附著,。(證據(jù)質(zhì)量中等)

9.在妊娠中期和晚期,UtA和UA多普勒評估都不能有效預(yù)測低危妊娠情況下的FGR,。(證據(jù)質(zhì)量高)

10.在妊娠中期或晚期對PIGF的測量不能有效預(yù)測低危妊娠情況下的FGR,。(證據(jù)質(zhì)量中等)

11.常規(guī)的恥骨聯(lián)合-宮體高度測量對FGR敏感且特異性較高,這對于體重指數(shù)正常的臨床低?;颊邅碚f是一種可接受的方法,。考慮產(chǎn)婦的身高,、體重,、年齡等和既往妊娠結(jié)局等,可提高評估的準(zhǔn)確性,。超聲檢查會比常規(guī)的恥骨聯(lián)合-宮體高度測量更精確(對于體重指數(shù)>35kg/m2,,羊水過多或巨大子宮肌瘤患者)。(證據(jù)質(zhì)量中等)

12.UA多普勒波形在胎盤源性的早發(fā)型FGR中通常異常,,而在胎盤源性的晚發(fā)型FGR中通常正常,。當(dāng)FGR是由于染色體數(shù)量變異(如18三體綜合征、21三體綜合征或三倍體綜合征等)或胎兒自身其他的疾病時(shí),UA多普勒檢查結(jié)果可能異常,。(證據(jù)質(zhì)量高)



推薦

圖片

預(yù)測FGR

1.對于在妊娠早期或中期母體血清篩查分析結(jié)果異常的孕婦,,可能存在FGR和其他胎盤源性的并發(fā)癥的風(fēng)險(xiǎn)。醫(yī)務(wù)人員應(yīng)使用UtA多普勒評估(如有)來判斷其出現(xiàn)FGR的最大風(fēng)險(xiǎn),。(強(qiáng)推薦,,證據(jù)質(zhì)量中等)

2.在發(fā)現(xiàn)存在FGR的臨床危險(xiǎn)因素或胎兒解剖學(xué)超聲結(jié)果提示時(shí),臨床醫(yī)生應(yīng)在孕期第24-26周時(shí)進(jìn)行胎兒生長的基線超聲評估,,并與UtA多普勒評估和/或PIGF測量結(jié)果相結(jié)合,,以告知患者妊娠晚期的胎兒監(jiān)測計(jì)劃。(強(qiáng)推薦,,證據(jù)質(zhì)量中等)

圖片

預(yù)防FGR

3.在第一次產(chǎn)前檢查時(shí),,臨床醫(yī)生應(yīng)耐心、包容地與患者討論以下話題:吸煙,、飲酒,、藥物濫用和孕期適當(dāng)?shù)捏w重管理。這將有助于更好地實(shí)施產(chǎn)前預(yù)防措施,。強(qiáng)推薦,,證據(jù)質(zhì)量高)

4.在妊娠16周前開始服用低劑量阿司匹林(150mg/d-162mg/d,并持續(xù)到>34周,,僅可預(yù)防有子癇前期風(fēng)險(xiǎn)的患者發(fā)生FGR,。(特定條件下建議,證據(jù)質(zhì)量低)

5.臨床醫(yī)生應(yīng)謹(jǐn)慎聯(lián)合使用低分子肝素和低劑量阿司匹林以預(yù)防FGR(對于少數(shù)易出現(xiàn)嚴(yán)重胎盤病變的子癇前期患者),。(特定條件下建議,,證據(jù)質(zhì)量低)

圖片

發(fā)現(xiàn)FGR

6.醫(yī)務(wù)人員可持續(xù)測量恥骨聯(lián)合-宮底高度來檢測體重指數(shù)<30kg/m2的臨床低危患者的FGR,。(特定條件下建議,,證據(jù)質(zhì)量中等)

7.對于體重指數(shù)高(特別當(dāng)>35kg/m2時(shí))、羊水過多或巨大子宮肌瘤的患者,,醫(yī)護(hù)人員應(yīng)采用超聲檢查(而不是恥骨聯(lián)合-宮底高度測量),。(強(qiáng)推薦,證據(jù)質(zhì)量中等)

8.超聲醫(yī)師應(yīng)使用Hadlock-3公式(體重=1.326-0.00326*腹圍*股骨長度 0.0107*頭圍 0.0438*腹圍 0.158*股骨長度)計(jì)算胎兒體重,,并應(yīng)用于超聲測量頭圍,、腹圍和股骨長。(強(qiáng)推薦,,證據(jù)質(zhì)量中等)

9.醫(yī)務(wù)人員應(yīng)基于無并發(fā)癥的胎兒超聲生長圖來估測胎兒體重,,以此來解釋胎兒的生長。(強(qiáng)推薦,,證據(jù)質(zhì)量中等)

10.對于低風(fēng)險(xiǎn)孕婦,,應(yīng)使用持續(xù)恥骨聯(lián)合-宮體高度測量和選擇性的超聲檢查,而不推薦常規(guī)的妊娠晚期超聲檢查,因?yàn)檫@種做法不能降低死產(chǎn)或不良圍產(chǎn)期結(jié)局的總體風(fēng)險(xiǎn),。(強(qiáng)推薦,,證據(jù)質(zhì)量中等)

圖片

疑似FGR的進(jìn)一步檢查

11.疑似FGR的情況應(yīng)由醫(yī)護(hù)人員進(jìn)行系統(tǒng)地評估,包括詳細(xì)的病史,、相關(guān)先天性感染的母體血清篩查以及詳細(xì)的超聲檢查,,以明確診斷和確定導(dǎo)致相關(guān)結(jié)果的潛在原因;同時(shí)將小于胎齡兒和胎盤源性的FGR或由潛在的遺傳疾病或畸形或感染引起的FGR區(qū)分開來,。(強(qiáng)建議,,證據(jù)質(zhì)量高)

12.任何有生機(jī)兒到36周,當(dāng)懷疑FGR時(shí),,單獨(dú)測量(如可獲?。㏄IGF或測量sFlt1/PIGF比值可以幫助臨床醫(yī)生識別胎盤源性的FGR。(特定條件下建議,,證據(jù)質(zhì)量中等)

13.當(dāng)懷疑經(jīng)胎盤的胎兒感染導(dǎo)致早發(fā)型FGR時(shí),,應(yīng)進(jìn)行母體血清ToRCH(弓形蟲、風(fēng)疹病毒,、巨細(xì)胞病毒和單純皰疹病毒)篩查,,巨細(xì)胞病毒感染是最常見的疾病,。疑似先天性感染的患者應(yīng)轉(zhuǎn)診至指定的地區(qū)母胎醫(yī)學(xué)中心進(jìn)行進(jìn)一步評估,。(強(qiáng)建議,證據(jù)質(zhì)量中等)

14.非整倍體非介入性產(chǎn)前篩查可用于確定FGR的遺傳原因,,但考慮到與FGR相關(guān)遺傳疾病的范圍,,結(jié)果正常時(shí)的參考價(jià)值有限。(強(qiáng)建議,,證據(jù)質(zhì)量高)

15.對于疑似早發(fā)型FGR的患者,,尤其合并結(jié)構(gòu)異常、羊水過多或多個(gè)軟指標(biāo)陽性的情況以及與胎盤因素?zé)o關(guān)時(shí),,建議進(jìn)行遺傳咨詢和羊膜腔穿刺術(shù)(用于胎兒DNA的染色體微陣列和先天性感染的分子分析),。(強(qiáng)建議,證據(jù)質(zhì)量高)

16.對于疑似早發(fā)型FGR的患者,,尤其合并低PIGF水平或sFlt1/PIGF比值升高時(shí),,發(fā)生子癇前期風(fēng)險(xiǎn)很高,應(yīng)對患者進(jìn)行教育和系列評估,。(強(qiáng)建議,,證據(jù)質(zhì)量中等)

圖片

早發(fā)型FGR的管理

17.臨床醫(yī)生應(yīng)主要使用多普勒聯(lián)合檢查(子宮動脈、臍動脈,、大腦中動脈,、腦胎盤血流比和靜脈導(dǎo)管多普勒)來識別并監(jiān)測早發(fā)型(<32周)FGR。(強(qiáng)建議,證據(jù)質(zhì)量高)

18.醫(yī)護(hù)人員應(yīng)聯(lián)合使用無應(yīng)激試驗(yàn)(NST),、電腦化的胎心監(jiān)護(hù)(如有)或全面或改良胎兒生物物理評分(BPP/mBPP)來監(jiān)測早發(fā)型FGR,,并應(yīng)在連續(xù)超聲檢查期間和住院期間作為輔助檢查進(jìn)行。(特定情況下的建議,,證據(jù)質(zhì)量中等)

19.當(dāng)早發(fā)型FGR的胎兒出現(xiàn)早期臍動脈多普勒波形異常(阻力升高,,表現(xiàn)為搏動指數(shù)>第95百分位數(shù))時(shí),應(yīng)每周通過大腦中動脈和靜脈導(dǎo)管多普勒檢查進(jìn)行評估,。若臍動脈變化保持穩(wěn)定,,并且靜脈導(dǎo)管多普勒檢查正常,門診評估即可,。(強(qiáng)建議,,證據(jù)質(zhì)量中等)

20.當(dāng)觀察到臍帶多普勒波形高度異常(即舒張末期血流反向)時(shí),或當(dāng)臍動脈舒張末期血流缺失伴有大腦中動脈或靜脈導(dǎo)管多普勒異常時(shí),,臨床醫(yī)生應(yīng)考慮收院進(jìn)行日常監(jiān)測,。(強(qiáng)建議,證據(jù)質(zhì)量中等)

21.當(dāng)早發(fā)型FGR合并子癇前期或其他嚴(yán)重并發(fā)癥,,例如Ⅰ型糖尿病時(shí),,臨床醫(yī)生應(yīng)考慮收院進(jìn)行日常監(jiān)測。(強(qiáng)建議,,據(jù)質(zhì)量中等)

22.如果出現(xiàn)以下情況,,無論胎齡,均應(yīng)安排緊急分娩:

產(chǎn)婦有分娩指征(例如重度子癇前期合并血壓失控或HELLP[溶血,、肝酶水平升高和血小板水平低]綜合征),;(強(qiáng)建議,證據(jù)質(zhì)量高)

出現(xiàn)胎盤早剝,;(強(qiáng)建議,,證據(jù)質(zhì)量高)

出現(xiàn)NST監(jiān)護(hù)異常(即變異降低或重復(fù)性遲發(fā)減速)。(強(qiáng)建議,,證據(jù)質(zhì)量高)

23.如果靜脈導(dǎo)管多普勒和NST正常,,出現(xiàn)臍動脈舒張末期血流反向,可將分娩時(shí)間推遲至孕30-32周,;出現(xiàn)臍動脈舒張末期血流缺失,,可將分娩時(shí)間推遲到孕32-34周。(強(qiáng)建議,,證據(jù)質(zhì)量高)

24.當(dāng)準(zhǔn)父母因早發(fā)型FGR面臨早產(chǎn)的可能時(shí),,臨床醫(yī)生應(yīng)安排他們向新生兒兒科醫(yī)生進(jìn)行咨詢。(強(qiáng)建議,,證據(jù)質(zhì)量高)

25.臨床醫(yī)生應(yīng)在計(jì)劃性早產(chǎn)前給予一系列的皮質(zhì)類固醇以促進(jìn)胎兒的肺部發(fā)育成熟,,并在分娩當(dāng)天靜脈注射硫酸鎂以保護(hù)胎兒神經(jīng),。這兩種藥物應(yīng)遵循無FGR妊娠的相同方案進(jìn)行使用。(強(qiáng)建議,,證據(jù)質(zhì)量高)

26.剖宮產(chǎn)通常適用于胎盤源性的早發(fā)型FGR和臍動脈(舒張末期血流缺失或血流反向)或靜脈導(dǎo)管(a波反向或缺失)存在嚴(yán)重多普勒異常的情況,,以避免引產(chǎn)所致胎兒急性損傷。(強(qiáng)建議,,證據(jù)質(zhì)量高)

27.當(dāng)有生機(jī)兒(23-26周)發(fā)生嚴(yán)重早發(fā)型FGR,,在即將發(fā)生死胎和新生兒死亡的高危時(shí)期,臨床醫(yī)生應(yīng)向做出艱難決定的準(zhǔn)父母提供全方位支持,。(強(qiáng)建議,,證據(jù)質(zhì)量中等)

圖片

晚發(fā)型FGR的管理

28.臨床醫(yī)生可以通過多種工具監(jiān)測疑似的晚發(fā)型FGR。標(biāo)準(zhǔn)的護(hù)理方法包括胎兒運(yùn)動的母體監(jiān)測,、全面或改良胎兒生物物理評分(BPP/mBPP)和無應(yīng)激試驗(yàn)(NST),。臍動脈多普勒監(jiān)測不應(yīng)單獨(dú)用于監(jiān)測。(強(qiáng)建議,,證據(jù)質(zhì)量中等)

29.大腦中動脈多普勒檢查可作為一種檢測工具,,但理論上應(yīng)與臍動脈多普勒檢查相結(jié)合,并通過推導(dǎo)腦-胎盤多普勒比值(大腦中動脈搏動指數(shù)/臍動脈搏動指數(shù))來解釋,。大腦中動脈多普勒檢查應(yīng)在胎兒靜止時(shí)進(jìn)行,,以避免出現(xiàn)結(jié)果假陽性。低于胎齡的第5百分位數(shù)的腦胎盤血流比被視作異常腦胎盤血流比,,并提示需要根據(jù)胎齡加強(qiáng)監(jiān)測或安排分娩,。(特定情況下建議,證據(jù)質(zhì)量低)

30.當(dāng)臍動脈和大腦中動脈多普勒檢查結(jié)果正常,患者感受到正常的胎動,并且EFW和胎兒腹圍在第3-9百分位數(shù)時(shí),,建議每周進(jìn)行BPP/mBPP,。(強(qiáng)建議,證據(jù)質(zhì)量低)

31.當(dāng)EFW或AC低于第3百分位數(shù)時(shí),,或當(dāng)其他觀測指標(biāo)表明胎兒生長確實(shí)受限時(shí),,需要進(jìn)行每周進(jìn)行兩次監(jiān)測或安排分娩。主要表現(xiàn)為:

子宮動脈多普勒異常(UtA-PI>第95百分位數(shù)),;

臍動脈多普勒異常(UA-PI>第95百分位數(shù)),;

大腦中動脈(MCA)多普勒異常(MCA-PI<第5百分位數(shù)或CPR<第5百分位數(shù));

羊水不足(最大羊水深度<2厘米),;

胎盤形態(tài)高度異常,,表明多區(qū)域組織損傷。(強(qiáng)建議,,證據(jù)質(zhì)量中等)

32.胎兒僅有輕度小于胎齡(EFW或AC在第3-9百分位數(shù),,且多普勒檢查結(jié)果正常,,羊水正常),應(yīng)考慮在孕39周進(jìn)行分娩,。(強(qiáng)建議,,證據(jù)質(zhì)量中等)

33.無并發(fā)癥的晚發(fā)型FGR(EFW或AC低于第3百分位數(shù),多普勒檢查正常,,羊水正常)時(shí),,應(yīng)考慮孕37周進(jìn)行分娩。(強(qiáng)建議,,證據(jù)質(zhì)量中等)

34.當(dāng)出現(xiàn)下列任何一種情況時(shí),,建議晚發(fā)型FGR的產(chǎn)婦在孕37周前分娩:臍動脈多普勒檢查異常(UA-PI>第95百分位數(shù),CPR<第5百分位數(shù)),、BPP/mBPP異常,、羊水過少或診斷為子癇前期。(強(qiáng)建議,,證據(jù)質(zhì)量中等)

35.對于頭先露且無剖宮產(chǎn)指征的產(chǎn)婦,,嘗試引產(chǎn)應(yīng)考慮到產(chǎn)婦年齡、胎次,、盆腔檢查結(jié)果,、入院時(shí)的超聲檢查結(jié)果、NST結(jié)果和夫妻意愿,。(特定情況下的建議,,證據(jù)質(zhì)量低)

36.因FGR而實(shí)施的引產(chǎn)術(shù)應(yīng)僅在持續(xù)胎心監(jiān)測的住院環(huán)境中進(jìn)行,而非間歇性聽診,。(強(qiáng)建議,,證據(jù)質(zhì)量中等)

37.當(dāng)因疑似晚發(fā)型FGR而引產(chǎn)時(shí),應(yīng)盡可能優(yōu)先采用機(jī)械的使宮頸成熟的方法而不是使用前列腺素藥物,。機(jī)械性使宮頸成熟可與低劑量催產(chǎn)素聯(lián)合使用,,作為胎兒健康的“催產(chǎn)素挑戰(zhàn)試驗(yàn)”。如果胎心監(jiān)測在引產(chǎn)過程中或分娩前期出現(xiàn)異常,,應(yīng)實(shí)施剖宮產(chǎn)終止妊娠,。(強(qiáng)建議,證據(jù)質(zhì)量中等)

38.當(dāng)出生時(shí)懷疑FGR,,應(yīng)將送胎盤做病理分析(如果可以的話),,尤其是B超提示明顯的胎盤異常。(強(qiáng)建議,,證據(jù)質(zhì)量中等)

參考文獻(xiàn):

1. Gadsb?ll K, Wright A, Kristensen SE, et al. Crown-rump length measurement error: impact on assessment of growth. Ultrasound Obstet Gynecol 2021;58:354e9.
2. Melamed N, Baschat A, Yinon Y, et al. FIGO (international Federation of Gynecology and Obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction. Int J Gynaecol Obstet 2021;152(Suppl 1):3e57.
3. Hiersch L, Barrett J, Fox NS, et al. Should twin-specific growth charts be used to assess fetal growth in twin pregnancies? Am J Obstet Gynecol 2022;227:10e28.
4. Mifsud W, Sebire NJ. Placental pathology in early-onset and late-onset fetal growth restriction. Fetal Diagn Ther 2014;36:117e28.
5. Redline RW. Placental pathology: a systematic approach with clinical correlations. Placenta 2008;29(Suppl A):S86e91.
6. McCowan LM, Figueras F, Anderson NH. Evidence-based national guidelines for the management of suspected fetal growth restriction: comparison, consensus, and controversy. Am J Obstet Gynecol 2018;218(2S):S855e68.
7. Lees CC, Stampalija T, Baschat A, et al. ISUOG Practice Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet Gynecol 2020;56:298e312.
8. Lees CC, Romero R, Stampalija T, et al. Clinical Opinion: the diagnosis and management of suspected fetal growth restriction: an evidence-based approach. Am J Obstet Gynecol 2022;226:366e78.
9. Hadlock FP, Harrist RB, Sharman RS, et al. Estimation of fetal weight with the use of head, body, and femur measurements–a prospective study. Am J Obstet Gynecol 1985;151:333e7.
10. Gordijn SJ, Beune IM, Thilaganathan B, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol 2016;48:333e9.
11. Riyami NA, Walker MG, Proctor LK, et al. Utility of head/abdomen circumference ratio in the evaluation of severe early-onset intrauterine growth restriction. J Obstet Gynaecol Can 2011;33:715e9.

12. Roeckner JT, Pressman K, Odibo L, et al. Outcome-based comparison of SMFM and ISUOG definitions of fetal growth restriction. Ultrasound Obstet Gynecol 2021;57:925e30.
13. Molina LCG, Odibo L, Zientara S, et al. Validation of Delphi procedure consensus criteria for defining fetal growth restriction. Ultrasound Obstet Gynecol 2020;56:61e6.
14. Huang T, Hoffman B, Meschino W, et al. Prediction of adverse pregnancy outcomes by combinations of first and second trimester biochemistrymarkers used in the routine prenatal screening of Down syndrome. Prenat Diagn 2010;30:471e7.
15. Papastefanou I, Wright D, Syngelaki A, et al. Competing-risks model for prediction of small-for-gestational-age neonate from biophysical and biochemical markers at 11e13 weeks’ gestation. Ultrasound Obstet Gynecol 2021;57:52e61.
16. Papastefanou I, Nowacka U, Buerger O, et al. Evaluation of the RCOG guideline for the prediction of neonates that are small for gestational age and comparison with the competing risks model. BJOG 2021;128:2110e5.
17. Nowacka U, Papastefanou I, Bouariu A, et al. Second-trimester contingent screening for small for gestational age neonates. Ultrasound Obstet Gynecol 2022;59:177e84.
18. Gagnon A, Wilson RD, SOCIETY OF OBSTETRICIANS AND GYNAECOLOGISTS OF CANADA GENETICS COMMITTEE. Obstetrical complications associated with abnormal maternal serum markers analytes. J Obstet Gynaecol Can 2008;30:918e32.
19. Hui D, Okun N, Murphy K, et al. Combinations of maternal serum markers to predict preeclampsia, small for gestational age, and stillbirth: a systematic review. J Obstet Gynaecol Can 2012;34:142e53.
20. Hughes AE, Sovio U, Gaccioli F, et al. The association between first trimester AFP to PAPP-A ratio and placentally-related adverse pregnancy outcome. Placenta 2019;81:25e31.
21. Zhong Y, Zhu F, Ding Y. Serum screening in first trimester to predict preeclampsia, small for gestational age and preterm delivery: systematic review and meta-analysis. BMC Pregnancy Childbirth 2015;15:191.
22. Heazell AE, Hayes DJ, Whitworth M, et al. Biochemical tests of placental function versus ultrasound assessment of fetal size for stillbirth and small-for-gestational-age infants. Cochrane Database Syst Rev 2019;5:CD012245.
23. Yaron Y, Heifetz S, Ochshorn Y, et al. Decreased first trimester PAPP-A is a predictor of adverse pregnancy outcome. Prenat Diagn 2002;22:778e82.
24. Schwartz N, Sammel MD, Leite R, et al. First-trimester placental ultrasound and maternal serum markers as predictors of small-for-gestational-age infants. Am J Obstet Gynecol 2014;211:253.e1e8.
25. Morris RK, Bilagi A, Devani P, et al. Association of serum PAPP-A levels in first trimester with small for gestational age and adverse pregnancy outcomes: systematic review and meta-analysis. Prenat Diagn 2017;37:253e65.
26. D’Antonio F, Rijo C, Thilaganathan B, et al. Association between firsttrimester maternal serum pregnancy-associated plasma protein-A and obstetric complications. Prenat Diagn 2013;33:839e47.
27. Alkazaleh F, Chaddha V, Viero S, et al. Second-trimester prediction of severe placental complications in women with combined elevations in alpha-fetoprotein and human chorionic gonadotrophin. Am J Obstet Gynecol 2006;194:821e7.
28. Proctor LK, Toal M, Keating S, et al. Placental size and the prediction of severe early-onset intrauterine growth restriction in women with low pregnancy-associated plasma protein-A. Ultrasound Obstet Gynecol 2009;34:274e82.
29. Porat S, Fitzgerald B, Wright E, et al. Placental hyperinflation and the risk of adverse perinatal outcome. Ultrasound Obstet Gynecol 2013;42:315e21.
30. Ormesher L, Johnstone ED, Shawkat E, et al. A clinical evaluation of placental growth factor in routine practice in high-risk women presenting with suspected pre-eclampsia and/or fetal growth restriction. Pregnancy Hypertens 2018;14:234e9. 31. McLaughlin K, Hobson SR, Chandran AR, et al. Circulating maternal placental growth factor responses to low-molecular-weight heparin in pregnant patients at risk of placental dysfunction. Am J Obstet Gynecol 2022;226(2S):S1145e1156.e1. 
32. McLaughlin K, Snelgrove JW, Audette MC, et al. PlGF (placental growth factor) testing in clinical practice: evidence from a Canadian tertiary maternity referral center. Hypertension 2021;77:2057e65.
33. Doulaveris G, Gallagher P, Romney E, et al. Fetal abdominal circumference in the second trimester and prediction of small for gestational age at birth. J Matern Fetal Neonatal Med 2020;33:2415e21.
34. D’Ambrosio V, Vena F, Marchetti C, et al. Midtrimester isolated short femur and perinatal outcomes: a systematic review and meta-analysis. Acta Obstet Gynecol Scand 2019;98:11e7.
35. Findley R, Allen VM, Brock J-AK. Adverse perinatal conditions associated with prenatally detected fetal echogenic bowel in Nova Scotia. J Obstet Gynaecol Can 2018;40:555e60.
36. Kingdom JC, Audette MC, Hobson SR, et al. A placenta clinic approach to the diagnosis and management of fetal growth restriction. Am J Obstet Gynecol 2018;218(2S):S803e17.
37. Friebe-Hoffmann U, Hiltmann A, Friedl TWP, et al. Prenatally diagnosed single umbilical artery (SUA) - retrospective analysis of 1169 fetuses. Ultraschall Med 2019;40:221e9.
38. O’Quinn C, Cooper S, Tang S, et al. Antenatal diagnosis of marginal and velamentous placental cord insertion and pregnancy outcomes. Obstet Gynecol 2020;135:953e9.
39. Ebbing C, Kiserud T, Johnsen SL, et al. Prevalence, risk factors and outcomes of velamentous and marginal cord insertions: a population-based study of 634,741 pregnancies. PLoS One 2013;8:e70380.
40. Moraitis AA, Bainton T, Sovio U, et al. Fetal umbilical artery Doppler as a tool for universal third trimester screening: a systematic review and metaanalysis of diagnostic test accuracy. Placenta 2021;108:47e54.
41. Cnossen JS, Morris RK, Riet Ter G, et al. Use of uterine artery Doppler ultrasonography to predict pre-eclampsia and intrauterine growth restriction: a systematic review and bivariable meta-analysis. CMAJ 2008;178:701e11.
42. MacDonald TM, Tran C, Kaitu’u-Lino TJ, et al. Assessing the sensitivity of placental growth factor and soluble fms-like tyrosine kinase 1 at 36 weeks’ gestation to predict small-for-gestational-age infants or late-onset preeclampsia: a prospective nested case-control study. BMC Pregnancy Childbirth 2018;18:354.
43. Hillesund ER, Bere E, Haugen M, et al. Development of a New Nordic Diet score and its association with gestational weight gain and fetal growth - a study performed in the Norwegian Mother and Child Cohort Study (MoBa). Public Health Nutr 2014;17:1909e18.
44. Cedergren MI. Optimal gestational weight gain for body mass index categories. Obstet Gynecol 2007;110:759e64.
45. Vonck S, Staelens AS, Lanssens D, et al. Low volume circulation in normotensive women pregnant with neonates small for gestational age. Fetal Diagn Ther 2019;46:238e45.
46. Rolnik DL, Wright D, Poon LC, et al. Aspirin versus placebo in pregnancies at high risk for preterm Preeclampsia. N Engl J Med 2017;377:613e22.
47. Guy GP, Leslie K, Diaz Gomez D, et al. Implementation of routine first trimester combined screening for pre-eclampsia: a clinical effectiveness study. BJOG 2021;128:149e56.
48. Rolnik DL, Nicolaides KH, Poon LC. Prevention of preeclampsia with aspirin. Am J Obstet Gynecol 2022;226(2S):S1108e19.
49. Tan MY, Poon LC, Rolnik DL, et al. Prediction and prevention of smallfor-gestational-age neonates: evidence from SPREE and ASPRE. Ultrasound Obstet Gynecol 2018;52:52e9.
50. Cruz-Lemini M, Vázquez JC, Ullmo J, et al. Low-molecular-weight heparin for prevention of preeclampsia and other placenta-mediated complications: a systematic review and meta-analysis. Am J Obstet Gynecol 2022;226(2S):S1126e1144.e17.
51. Rodger MA, Gris JC, de Vries JIP, et al. Low-molecular-weight heparin and recurrent placenta-mediated pregnancy complications: a meta-analysis of individual patient data from randomised controlled trials. Lancet 2016;388:2629e41.
52. Haddad B, Winer N, Chitrit Y, et al. Enoxaparin and aspirin compared with aspirin alone to prevent placenta-mediated pregnancy complications: a randomized controlled trial. Obstet Gynecol 2016;128:1053e63.
53. Groom KM, McCowan LM, Mackay LK, et al. Enoxaparin for the prevention of preeclampsia and intrauterine growth restriction in women with a history: a randomized trial. Am J Obstet Gynecol 2017;216:296.e1e296.e14.
54. Toal M, Chan C, Fallah S, et al. Usefulness of a placental profile in high-risk pregnancies. Am J Obstet Gynecol 2007;196:363.e1e7.
55. Lecarpentier E, Gris JC, Cochery-Nouvellon E, et al. Angiogenic factor profiles in pregnant women with a history of early-onset severe preeclampsia receiving low-molecular-weight heparin prophylaxis. Obstet Gynecol 2018;131:63e9.
56. Pels A, Derks J, Elvan-Taspinar A, et al. Maternal sildenafil vs placebo in pregnant women with severe early-onset fetal growth restriction: a randomized clinical trial. JAMA. Netw Open 2020;3:e205323.
57. Papageorghiou AT, Ohuma EO, Gravett MG, et al. International standards for symphysis-fundal height based on serial measurements from the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project: prospective cohort study in eight countries. BMJ 2016;355:i5662.
58. Goto E. Prediction of low birthweight and small for gestational age from symphysis-fundal height mainly in developing countries: a meta-analysis. J Epidemiol Community Health 2013;67:999e1005.
59. Imdad A, Yakoob MY, Siddiqui S, et al. Screening and triage of intrauterine growth restriction (IUGR) in general population and high risk pregnancies: a systematic review with a focus on reduction of IUGR related stillbirths. BMC Public Health 2011;11(Suppl 3):S1.
60. Robert Peter J, Ho JJ, Valliapan J, et al. Symphysial fundal height (SFH) measurement in pregnancy for detecting abnormal fetal growth. Cochrane Database Syst Rev 2015;2015:CD008136.
61. American College of Obstetricians and Gynecologists’ Committee on Practice BulletinsdObstetrics and the Society forMaternal-FetalMedicin. ACOG Practice Bulletin No. 204: Fetal growth restriction. Obstet Gynecol 2019;133:e97e109. 
62. Gardosi J, Francis A. Controlled trial of fundal height measurement plotted on customised antenatal growth charts. Br J Obstet Gynaecol 1999;106:309e17. 
63. Dudley NJ. A systematic review of the ultrasound estimation of fetal weight. Ultrasound Obstet Gynecol 2005;25:80e9. 
64. Cody F, Unterscheider J, Daly S, et al. The effect of maternal obesity on sonographic fetal weight estimation and perinatal outcome in pregnancies complicated by fetal growth restriction. J Clin Ultrasound 2016;44:34e9. 
65. Melamed N, Ryan G, Windrim R, et al. Choice of formula and accuracy of fetal weight estimation in small-for-gestational-age fetuses. J Ultrasound Med 2016;35:71e82. 
66. Proctor LK, Rushworth V, Shah PS, et al. Incorporation of femur length leads to underestimation of fetal weight in asymmetric preterm growth restriction. Ultrasound Obstet Gynecol 2010;35:442e8. 
67. Kramer MS, Platt RW, Wen SW, et al. A new and improved populationbased Canadian reference for birth weight for gestational age. Pediatrics 2001;108:E35. 
68. Hadlock FP, Harrist RB, Martinez-Poyer J. In utero analysis of fetal growth: a sonographic weight standard. Radiology 1991;181:129e33.
69. Melamed N, Hiersch L, Aviram A, et al. Diagnostic accuracy of fetal growth charts for placenta-related fetal growth restriction. Placenta 2021;105:70e7.
70. Hiersch L, Lipworth H, Kingdom J, et al. Identification of the optimal growth chart and threshold for the prediction of antepartum stillbirth. Arch Gynecol Obstet 2021;303:381e90.
71. Liauw J, Mayer C, Albert A, et al. Which chart and which cut-point: deciding on the INTERGROWTH, World Health Organization, or Hadlock fetal growth chart. BMC Pregnancy Childbirth 2022;22:25.
72. Sovio U, White IR, Dacey A, et al. Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the Pregnancy Outcome Prediction (POP) study: a prospective cohort study. Lancet 2015;386:2089e97.
73. Skr?stad RB, Eik-Nes SH, Sviggum O, et al. A randomized controlled trial of third-trimester routine ultrasound in a non-selected population. Acta Obstet Gynecol Scand 2013;92:1353e60.
74. Roma E, Arnau A, Berdala R, et al. Ultrasound screening for fetal growth restriction at 36 vs 32 weeks’ gestation: a randomized trial (ROUTE). Ultrasound Obstet Gynecol 2015;46:391e7.
75. Henrichs J, Verfaille V, Jellema P, et al. Effectiveness of routine third trimester ultrasonography to reduce adverse perinatal outcomes in low risk pregnancy (the IRIS study): nationwide, pragmatic, multicentre, stepped wedge cluster randomised trial. BMJ 2019;367:l5517.
76. Wanyonyi SZ, Orwa J, Ozelle H, et al. Routine third-trimester ultrasound for the detection of small-for-gestational age in low-risk pregnancies (ROTTUS study): randomized controlled trial. Ultrasound Obstet Gynecol 2021;57:910e6.
77. Caradeux J, Martinez-Portilla RJ, Peguero A, et al. Diagnostic performance of third-trimester ultrasound for the prediction of late-onset fetal growth restriction: a systematic review and meta-analysis. Am J Obstet Gynecol 2019;220:449e459.e19.
78. Smith GC, Moraitis AA, Wastlund D, et al. Universal late pregnancy ultrasound screening to predict adverse outcomes in nulliparous women: a systematic review and cost-effectiveness analysis. Health Technol Assess 2021;25:1e190.
79. Gaccioli F, Sovio U, Cook E, et al. Screening for fetal growth restriction using ultrasound and the sFLT1/PlGF ratio in nulliparous women: a prospective cohort study. Lancet Child Adolesc Health 2018;2:569e81.
80. Sovio U, Goulding N, McBride N, et al. A maternal serum metabolite ratio predicts fetal growth restriction at term. Nat Med 2020;26:348e53.
81. Smith GCS. Developing novel tests to screen for fetal growth restriction. Trends Mol Med 2021;27:743e52.
82. Hiersch L, Melamed N. Fetal growth velocity and body proportion in the assessment of growth. Am J Obstet Gynecol 2018;218(2S):S700e711.e1.
83. Wastlund D, Moraitis AA, Dacey A, et al. Screening for breech presentation using universal late-pregnancy ultrasonography: a prospective cohort study and cost effectiveness analysis. PLoS Med 2019;16:e1002778.
84. Drukker L, Bradburn E, Rodriguez GB, et al. How often do we identify fetal abnormalities during routine third-trimester ultrasound? A systematic review and meta-analysis. BJOG 2021;128:259e69.
85. Butt K, Lim KI. Guideline No. 388-Determination of gestational age by ultrasound. J Obstet Gynaecol Can 2019;41:1497e507.
86. Dall’Asta A, Girardelli S, Usman S, et al. Etiology and perinatal outcome of periviable fetal growth restriction associated with structural or genetic anomaly. Ultrasound Obstet Gynecol 2020;55:368e74.
87. van der Knoop BJ, Zonnenberg IA, Verbeke JIML, et al. Additional value of advanced neurosonography and magnetic resonance imaging in fetuses at risk for brain damage. Ultrasound Obstet Gynecol 2020;56:348e58.
88. Khalil A, Sotiriadis A, Chaoui R, et al. ISUOG Practice Guidelines: role of ultrasound in congenital infection. Ultrasound Obstet Gynecol 2020;56:128e51.
89. Jauniaux E, Brown R, Rodeck C, et al. Prenatal diagnosis of triploidy during the second trimester of pregnancy. Obstet Gynecol 1996;88:983e9.
90. Fitzpatrick D, Holmes NE, Hui L. A systematic review of maternal TORCH serology as a screen for suspected fetal infection. Prenat Diagn 2022;42:87e96.
91. Suhren JT, Meinardus A, Hussein K, et al. Meta-analysis on COVID-19-pregnancy-related placental pathologies shows no specific pattern. Placenta 2022;117:72e7.
92. Dubucs C, Groussolles M, Ousselin J, et al. Severe placental lesions due to maternal SARS-CoV-2 infection associated to intrauterine fetal death. Hum Pathol 2022;121:46e55.
93. Chmielewska B, Barratt I, Townsend R, et al. Effects of the COVID-19 pandemic on maternal and perinatal outcomes: a systematic review and meta-analysis. Lancet Glob Health 2021;9:e759e72.
94. Wei SQ, Bilodeau-Bertrand M, Liu S, et al. The impact of COVID-19 on pregnancy outcomes: a systematic review and meta-analysis. CMAJ 2021;193:E540e8.
95. Yamamoto R, Ishii K, Shimada M, et al. Significance of maternal screening for toxoplasmosis, rubella, cytomegalovirus and herpes simplex virus infection in cases of fetal growth restriction. J Obstet Gynaecol Res 2013;39:653e7.
96. Snijders RJ, Sherrod C, Gosden CM, et al. Fetal growth retardation: associated malformations and chromosomal abnormalities. Am J Obstet Gynecol 1993;168:547e55.
97. Tzadikevitch Geffen K, Singer A, Maya I, et al. The yield of chromosomal microarray in pregnancies complicated with fetal growth restriction can be predicted according to clinical parameters. Fetal Diagn Ther 2021;48:140e8.
98. Benton SJ, McCowan LM, Heazell AEP, et al. Placental growth factor as a marker of fetal growth restriction caused by placental dysfunction. Placenta 2016;42:1e8.
99. Figueras F, Gratacos E. Stage-based approach to the management of fetal growth restriction. Prenat Diagn 2014;34:655e9.
100. Figueras F, Caradeux J, Crispi F, et al. Diagnosis and surveillance of late-onset fetal growth restriction. Am J Obstet Gynecol 2018;218(2S):S790e802.e1.
101. Levytska K, Higgins M, Keating S, et al. Placental pathology in relation to uterine artery Doppler findings in pregnancies with severe intrauterine growth restriction and abnormal umbilical artery Doppler changes. Am J Perinatol 2017;34:451e7.
102. Korzeniewski SJ, Romero R, Chaiworapongsa T, et al. Maternal plasma angiogenic index-1 (placental growth factor/soluble vascular endothelial growth factor receptor-1) is a biomarker for the burden of placental lesions consistent with uteroplacental underperfusion: a longitudinal case-cohort study. Am J Obstet Gynecol 2016;214:629.e1e629.e17.
103. Ashwal E, Ferreira F, Mei-Dan E, et al. The accuracy of fetoplacental Doppler in distinguishing between growth restricted and constitutionally small fetuses. Placenta 2022;120:40e8.
104. Sagi-Dain L, Maya I, Reches A, et al. Chromosomal microarray analysis results from pregnancies with various ultrasonographic anomalies. Obstet Gynecol 2018;132:1368e75.
105. Borrell A, Grande M, Pauta M, et al. Chromosomal microarray analysis in fetuses with growth restriction and normal karyotype: a systematic review and meta-analysis. Fetal Diagn Ther 2018;44:1e9.
106. Leytes S, Haratz KK, Grin L, et al. Procedure-to-delivery interval after late amniocentesis and the need for routine antenatal corticosteroids. J Matern Fetal Neonatal Med 2020;35:4338e45.
107. Iliodromiti S, Mackay DF, Smith GC, et al. Customised and noncustomised birth weight centiles and prediction of stillbirth and infant mortality and morbidity: a cohort study of 979,912 term singleton pregnancies in Scotland. PLoS Med 2017;14:e1002228.
108. Poon LC, Magee LA, Verlohren S, et al. A literature review and best practice advice for second and third trimester risk stratification, monitoring, and management of pre-eclampsia: compiled by the Pregnancy and Non-Communicable Diseases Committee of FIGO (the International Federation of Gynecology and Obstetrics). Int J Gynaecol Obstet 2021;154(Suppl 1):3e31.
109. Crimmins S, Desai A, Block-Abraham D, et al. A comparison of Doppler and biophysical findings between liveborn and stillborn growth-restricted fetuses. Am J Obstet Gynecol 2014;211:669.e1e669.e10.
110. Baschat AA. Integrated fetal testing in growth restriction: combining multivessel Doppler and biophysical parameters. Ultrasound Obstet Gynecol 2003;21:1e8.
111. Hecher K, Bilardo CM, Stigter RH, et al. Monitoring of fetuses with intrauterine growth restriction: a longitudinal study. Ultrasound Obstet Gynecol 2001;18:564e70.
112. Turan OM, Turan S, Gungor S, et al. Progression of Doppler abnormalities in intrauterine growth restriction. Ultrasound Obstet Gynecol 2008;32:160e7.
113. Oros D, Figueras F, Cruz-Martinez R, et al. Longitudinal changes in uterine, umbilical and fetal cerebral Doppler indices in late-onset small-forgestational age fetuses. Ultrasound Obstet Gynecol 2011;37:191e5.
114. Unterscheider J, Daly S, Geary MP, et al. Predictable progressive Doppler deterioration in IUGR: does it really exist? Am J Obstet Gynecol 2013;209:539.e1e7.
115. Ferrazzi E, Bozzo M, Rigano S, et al. Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet Gynecol 2002;19:140e6.
116. Lees CC, Marlow N, van Wassenaer-Leemhuis A, et al. 2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): a randomised trial. Lancet 2015;385:2162e72.
117. Melamed N, Pittini A, Barrett J, et al. Antenatal corticosteroids and outcomes of small-for-gestational-age neonates. Obstet Gynecol 2016;128:1001e8.
118. Edwards A, Baker LS, Wallace EM. Changes in umbilical artery flow velocity waveforms following maternal administration of betamethasone. Placenta 2003;24:12e6.
119. Simchen MJ, Alkazaleh F, Adamson SL, et al. The fetal cardiovascular response to antenatal steroids in severe early-onset intrauterine growth restriction. Am J Obstet Gynecol 2004;190:296e304.
120. Boers KE, Vijgen SMC, Bijlenga D, et al. Induction versus expectant monitoring for intrauterine growth restriction at term: randomised equivalence trial (DIGITAT). BMJ 2010;341:c7087.
121. Meler E, Mazarico E, Eixarch E, et al. Ten-year experience of protocolbased management of small-for-gestational-age fetuses: perinatal outcome in late-pregnancy cases diagnosed after 32 weeks. Ultrasound Obstet Gynecol 2021;57:62e9.
122. Zhu MY, Milligan N, Keating S, et al. The hemodynamics of late-onset intrauterine growth restriction by MRI. Am J Obstet Gynecol 2016;214:367.e1e367.e17.
123. Shah PS, Ye XY, Synnes A, et al. Prediction of survival without morbidity for infants born at under 33 weeks gestational age: a user-friendly graphical tool. Arch Dis Child Fetal Neonatal Ed 2012;97:F110e5.
124. Selvaratnam RJ, Wallace EM, Wolfe R, et al. Association between iatrogenic delivery for suspected fetal growth restriction and childhood school outcomes. JAMA 2021;326:145e53.
125. Conde-Agudelo A, Villar J, Kennedy SH, et al. Predictive accuracy of cerebroplacental ratio for adverse perinatal and neurodevelopmental outcomes in suspected fetal growth restriction: systematic review and metaanalysis. Ultrasound Obstet Gynecol 2018;52:430e41.
126. Flood K, Unterscheider J, Daly S, et al. The role of brain sparing in the prediction of adverse outcomes in intrauterine growth restriction: results of the multicenter PORTO Study. Am J Obstet Gynecol 2014;211:288.e1e5.
127. Shinohara S, Uchida Y, Kasai M, et al. Association between the high soluble fms-like tyrosine kinase-1 to placental growth factor ratio and adverse outcomes in asymptomatic women with early-onset fetal growth restriction. Hypertens Pregnancy 2017;36:269e75.
128. Chappell LC, Brocklehurst P, Green ME, et al. Planned early delivery or expectant management for late preterm pre-eclampsia (PHOENIX): a randomised controlled trial. Lancet 2019;394:1181e90.
129. Skoll A, Boutin A, Bujold E, et al. No. 364-antenatal corticosteroid therapy for improving neonatal outcomes. J Obstet Gynaecol Can 2018;40:1219e39.
130. Stockley EL, Ting JY, Kingdom JC, et al. Intrapartum magnesium sulfate is associated with neuroprotection in growth-restricted fetuses. Am J Obstet Gynecol 2018;219:606.e1e8.
131. Magee LA, De Silva DA, Sawchuck D, et al. No. 376-magnesium sulphate for fetal neuroprotection. J Obstet Gynaecol Can 2019;41:505e22.
132. Brown BE, Shah PS, Afifi JK, et al. Delayed cord clamping in small for gestational age preterm infants. Am J Obstet Gynecol 2022;226:247.e1e247.e10.
133. McDonald SD, Narvey M, Ehman W, et al. Guideline No. 424: Umbilical cord management in preterm and term infants. J Obstet Gynaecol Can 2022;44:313e322.e1.
134. Jasani B, Torgalkar R, Ye XY, et al. Association of umbilical cord management strategies with outcomes of preterm infants: a systematic review and network meta-analysis. JAMA Pediatr 2021;175:e210102.
135. Ting JY, Kingdom JC, Shah PS. Antenatal glucocorticoids, magnesium sulfate, and mode of birth in preterm fetal small for gestational age. Am J Obstet Gynecol 2018;218(2S):S818e28.
136. Shinar S, Tigert M, Agrawal S, et al. Placental growth factor as a diagnostic tool for placental mediated fetal growth restriction. Pregnancy Hypertens 2021;25:123e8.
137. Lin CC, Devoe LD, River P, et al. Oxytocin challenge test and intrauterine growth retardation. Am J Obstet Gynecol 1981;140:282e8.
138. Dore S, Ehman W. No. 396-fetal health surveillance: intrapartum consensus guideline. J Obstet Gynaecol Can 2020;42:316e348.e9.
139. Zur RL, Kingdom JC, Parks WT, et al. The placental basis of fetal growth restriction. Obstet Gynecol Clin North Am 2020;47:81e98.
140. Jago CA, Crawford SG, Gill SJ, et al. Mental health and maternal mortality-when new life doesn’t bring Joy. J Obstet Gynaecol Can 2021;43:67e73.e1.
141. Accortt E, Mirocha J, Jackman S, et al. Association between diagnosed perinatal mood and anxiety disorders and adverse perinatal outcomes. J Matern Fetal Neonatal Med 2022;35:9066e70.
142. Ray JG, Park AL, Fell DB. Mortality in infants affected by preterm birth and severe small-for-gestational age birth weight. Pediatrics 2017;140: e20171881.
143. Bhargava SK, Sachdev HS, Fall CHD, et al. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med 2004;350:865e75.
144. Smith GC, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129,290 births. Lancet 2001;357:2002e6.
145. Ananth CV, Kaminsky L, Getahun D, et al. Recurrence of fetal growth restriction in singleton and twin gestations. J Matern Fetal Neonatal Med 2009;22:654e61.
146. Brady CA, Williams C, Batra G, et al. Immunomodulatory therapy reduces the severity of placental lesions in chronic histiocytic intervillositis. Front Med (Lausanne) 2021;8:753220.
147. Derricott H, Jones RL, Greenwood SL, et al. Characterizing villitis of unknown etiology and inflammation in stillbirth. Am J Pathol 2016;186:952e61.
148. Andrikopoulou M, Purisch SE, Handal-Orefice R, et al. Low-dose aspirin is associated with reduced spontaneous preterm birth in nulliparous women. Am J Obstet Gynecol 2018;219:399.e1e6.
149. Franco C, Walker M, Robertson J, et al. Placental infarction and thrombophilia. Obstet Gynecol 2011;117:929e34.
150. Kingdom JCP, Drewlo S. Is heparin a placental anticoagulant in high-risk pregnancies? Blood 2011;118:4780e8.
151. Ashwal E, McLaughlin K, Melamed N, et al. Predictive accuracy of early mid-trimester placental markers for recurrence of placenta-mediated pregnancy complications. Ultrasound Obstet Gynecol in press. Blood 2023 Mar;61(3):418e20.
152. Guy GP, Leslie K, Diaz Gomez D, et al. Effect of routine first-trimester combined screening for pre-eclampsia on small-for-gestational-age birth: a secondary interrupted time series analysis. Ultrasound Obstet Gynecol 2022;59:55e60.
153. Myers JE, Kenny LC, McCowan LM, et al. Angiogenic factors combined with clinical risk factors to predict preterm pre-eclampsia in nulliparous women: a predictive test accuracy study. BJOG 2013;120:1215e23. 
154. Audette MC, McLaughlin K, Kingdom JC. Second trimester placental growth factor levels and placental histopathology in low-risk nulliparous pregnancies. J Obstet Gynaecol Can 2021;43:1145e1152.e1. 
155. Cluver CA, Hiscock R, Decloedt EH, et al. Use of metformin to prolong gestation in preterm pre-eclampsia: randomised, double blind, placebo controlled trial. BMJ 2021;374:n2103. 
156. Toal M, Keating S, Machin G, et al. Determinants of adverse perinatal outcome in high-risk women with abnormal uterine artery Doppler images. Am J Obstet Gynecol 2008;198:330.e1e7. 
157. Crispi F, Llurba E, Domínguez C, et al. Predictive value of angiogenic factors and uterine artery Doppler for early- versus late-onset preeclampsia and intrauterine growth restriction. Ultrasound Obstet Gynecol 2008;31:303e9.

上下滑動查看

譯者:
魏秋娜 南方醫(yī)科大學(xué)第二臨床醫(yī)學(xué)院
羅天宇 南方醫(yī)科大學(xué)第二臨床醫(yī)學(xué)院
張景怡 南方醫(yī)科大學(xué)第二臨床醫(yī)學(xué)院
黃啟濤 佛山市第一人民醫(yī)院婦產(chǎn)科

    本站是提供個(gè)人知識管理的網(wǎng)絡(luò)存儲空間,,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn),。請注意甄別內(nèi)容中的聯(lián)系方式,、誘導(dǎo)購買等信息,,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,,請點(diǎn)擊一鍵舉報(bào),。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多