Front Immunol. 2021; 12: 795559. Published online 2021 Nov 1. doi: 10.3389/fimmu.2021.795559 PMCID: PMC8591093 PMID: 34790209 Editorial: Immunity and Inflammatory Response in Kidney Stone Disease Visith Thongboonkerd, 3 , * , ? Author information Article notes Copyright and License information Disclaimer 腎結(jié)石病的免疫和炎癥反應(yīng)腎結(jié)石?。ɑ蚰I結(jié)石)是一種常見的泌尿系統(tǒng)疾病,,在全球所有年齡段的男女中都會造成嚴重的發(fā)病率和經(jīng)濟負擔(dān)(1),。它的流行率正在以驚人的速度普遍增加( 2-5 ),。此外,結(jié)石形成可引發(fā)其他腎臟和血管疾病,,例如高血壓,、慢性腎臟疾病和終末期腎臟疾病( 6-8 )。腎結(jié)石是主要在骨盆中的礦物質(zhì)沉積物,,游離或附著在腎乳頭上 ( 9 ),。草酸鈣 (CaOx) 是大約 80% 的腎結(jié)石的主要成分,其中大部分是特發(fā)性的 ( 10),。大多數(shù)特發(fā)性 CaOx 結(jié)石是通過附著在腎乳頭表面上的上皮下沉積的磷酸鈣而形成的,,稱為 Randall 斑塊 (RP) ( 11 , 12 )。一些結(jié)石形成為腎臟末端集合管內(nèi)結(jié)晶沉積物的過度生長(13),。兩種致病機制都需要周期性的尿過飽和CaOx(即高鈣尿癥和高草酸尿癥)并伴有低水平的抑制劑(例如檸檬酸鹽和其他尿大分子抑制劑)(13,、14)。 臨床和實驗研究結(jié)果表明,,在實驗動物和結(jié)石患者的腎組織中,,與炎癥、免疫和補體激活途徑相關(guān)的基因表達增加 ( 11 ),。炎癥通路在 RP 周圍的人腎組織中被激活 ( 15 ),。巨噬細胞似乎與此密切相關(guān)。M1 相關(guān)基因與促進結(jié)石形成有關(guān),,而 M2 相關(guān)基因與結(jié)石抑制有關(guān) ( 16 , 17 ),。CaOx 晶體誘導(dǎo) M1 巨噬細胞極化并刺激單核細胞的炎癥反應(yīng) ( 18 )。另一方面,,M2 巨噬細胞可以吞噬和降解 CaOx 結(jié)晶片段(16 -18 ),。巨噬細胞分化也受雄激素受體的影響,雄激素受體調(diào)節(jié)巨噬細胞集落刺激因子,,一種將單核細胞和幼稚巨噬細胞極化為抗炎巨噬細胞的細胞因子 ( 19 ),。 高草酸鹽會影響循環(huán)單核細胞的線粒體,導(dǎo)致巨噬細胞極化改變(促進 M1 超過 M2)(20),。結(jié)石患者的免疫功能障礙可能會導(dǎo)致單核細胞內(nèi)草酸鹽和 CaOx 介導(dǎo)的活性氧 (ROS) 過量產(chǎn)生,,從而損害其線粒體并損害結(jié)石晶體的清除 ( 16 – 18 , 20 )。將幼稚的骨髓來源的巨噬細胞暴露于 CaOx 會降低 NAD 依賴性蛋白去乙?;?sirtuin-3 的表達并增加促炎介質(zhì) ( 17),。除了氧化應(yīng)激,高草酸鹽和 CaOx 晶體可以通過激活含有 3 (NLRP3) 炎性體的 NLR 家族 pyrin 結(jié)構(gòu)域來誘導(dǎo)炎癥反應(yīng),,從而觸發(fā)促炎細胞因子 IL-1B 和 IL-18 的釋放 ( 21 , 22 ),。使 NLRP3 失活可以通過改變巨噬細胞極化來防止草酸鹽損傷。對實驗性誘導(dǎo)的大鼠高草酸尿癥的抗氧化治療也減少了炎癥反應(yīng)和炎癥介質(zhì)的產(chǎn)生 ( 23 , 24 ),。 事實上,,腎結(jié)石疾病的炎癥可以是上游(作為致病因素)或下游事件(作為并發(fā)癥),。盡管有上述知識,但腎結(jié)石病的免疫和免疫反應(yīng)仍不清楚(主要是因為研究不足),,因此需要進一步闡明,。因此,本研究課題提供了一個很好的機會來突出和促進該領(lǐng)域的研究,。它是腎結(jié)石免疫機制和免疫調(diào)節(jié)的最新基礎(chǔ),、臨床前和臨床研究的簡明合集。 田口等人的系統(tǒng)評價,。提供了有關(guān)巨噬細胞在 CaOx 腎結(jié)石形成中的作用的最新知識,。本文總結(jié)了與CaOx 腎結(jié)石病中單核細胞和所有類型巨噬細胞(包括非極化和極化巨噬細胞)的體外、離體和體內(nèi)功能相關(guān)的所有發(fā)現(xiàn),。 Ma 等人的一項研究,。表明在 C57BL/6N (B6N)、129,、B6J 和 Balb/c 小鼠中,,高草酸鹽飲食僅在 B6N 小鼠中導(dǎo)致 CaOx 晶體沉積、腎臟尿調(diào)節(jié)素表達增加,、腎臟炎癥和纖維化,。用 B6N 回交 129 菌株會導(dǎo)致類似于 B6N 小鼠的 CaOx 晶體沉積,而微生物群適應(yīng)的共同住房研究似乎對 CaOx 晶體沉積沒有影響,。作者得出結(jié)論,,遺傳背景而非微生物群在菌株特異性高草酸尿癥誘導(dǎo)的腎結(jié)石形成中起作用。 Chuenwisad 等人的另一項研究,。證明來自結(jié)石患者的草酸鹽,、CaOx 一水合物和尿液,但不是來自沒有結(jié)石患者和未經(jīng)處理的對照的尿液,,導(dǎo)致與陽性對照過氧化氫相似的近端腎小管細胞中應(yīng)激誘導(dǎo)的過早衰老和端??s短。他們還報告說,,這種衰老誘導(dǎo)的機制可能是通過p16 上調(diào)和下調(diào)庇護素成分來介導(dǎo)的。 Jin 等人的動物研究,。采用多種技術(shù)來確定乙醛酸誘導(dǎo)的腎結(jié)石模型中腎免疫細胞群的分布,。他們證明,短鏈脂肪酸 (SCFA) 通過增加 CX3CR1 + CD24 -巨噬細胞數(shù)量和減少腎臟中的 GR1 +中性粒細胞浸潤來防止乙醛酸誘導(dǎo)的腎結(jié)石形成,。此外,,一項機制研究表明,SCFAs 的這種預(yù)防作用是通過 GPR43 介導(dǎo)的,,GPR43 是 SCFAs 的受體之一,。Kumar 等人的一項臨床研究,。強調(diào)了飲食對腎結(jié)石疾病的免疫和免疫反應(yīng)的顯著影響。他們表明,,高草酸鹽飲食會影響人類的單核細胞生物能量學(xué),、線粒體復(fù)合物活性、細胞因子/趨化因子譜和炎癥信號傳導(dǎo),。然而,,這種免疫調(diào)節(jié)在腎結(jié)石調(diào)節(jié)中的臨床影響和最終結(jié)果仍有待闡明。總體而言,,這些文章中提供的知識有助于更清晰地了解腎結(jié)石疾病的免疫和免疫反應(yīng),。然而,仍需要對該研究課題進行更廣泛的調(diào)查,,以進一步加深我們對腎結(jié)石發(fā)病機制的理解,,最終目標(biāo)是減少新的和復(fù)發(fā)的結(jié)石形成并減少其并發(fā)癥。 1. Thongprayoon C, Krambeck AE, Rule AD. Determining the True Burden of Kidney Stone Disease. Nat Rev Nephrol (2020) 16(12):736–46. doi: 10.1038/s41581-020-0320-7 [PubMed] [CrossRef] [Google Scholar] 2. Abufaraj M, Xu T, Cao C, Waldhoer T, Seitz C, D’Andrea D, et al. . Prevalence and Trends in Kidney Stone Among Adults in the USA: Analyses of National Health and Nutrition Examination Survey 2007-2018 Data. Eur Urol Focus (2020). doi: 10.1016/j.euf.2020.08.011 [PubMed] [CrossRef] [Google Scholar] 3. Youssef RF, Martin JW, Sakhaee K, Poindexter J, Dianatnejad S, Scales CD, et al. . Rising Occurrence of Hypocitraturia and Hyperoxaluria Associated With Increasing Prevalence of Stone Disease in Calcium Kidney Stone Formers. Scand J Urol (2020) 54(5):426–30. doi: 10.1080/21681805.2020.1794955 [PubMed] [CrossRef] [Google Scholar] 5. Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, et al. . Kidney Stones. Nat Rev Dis Primers (2016) 2:16008. doi: 10.1038/nrdp.2016.8 [PMC free article] [PubMed] [CrossRef] [Google Scholar] 6. Bishop K, Momah T, Ricks J. Nephrolithiasis. Prim Care (2020) 47(4):661–71. doi: 10.1016/j.pop.2020.08.005 [PubMed] [CrossRef] [Google Scholar] 7. Viljoen A, Chaudhry R, Bycroft J. Renal Stones. Ann Clin Biochem (2019) 56(1):15–27. doi: 10.1177/0004563218781672 [PubMed] [CrossRef] [Google Scholar] 8. Ferraro PM, Marano R, Primiano A, Gervasoni J, Bargagli M, Rovere G, et al. . Stone Composition and Vascular Calcifications in Patients With Nephrolithiasis. J Nephrol (2019) 32(4):589–94. doi: 10.1007/s40620-019-00619-w [PubMed] [CrossRef] [Google Scholar] 9. Kok DJ, Boellaard W, Ridwan Y, Levchenko VA. Timelines of the "Free-Particle" and "Fixed-Particle" Models of Stone-Formation: Theoretical and Experimental Investigations. Urolithiasis (2017) 45(1):33–41. doi: 10.1007/s00240-016-0946-x [PMC free article] [PubMed] [CrossRef] [Google Scholar] 10. O’Kell AL, Grant DC, Khan SR. Pathogenesis of Calcium Oxalate Urinary Stone Disease: Species Comparison of Humans, Dogs, and Cats. Urolithiasis (2017) 45(4):329–36. doi: 10.1007/s00240-017-0978-x [PMC free article] [PubMed] [CrossRef] [Google Scholar] 11. Khan SR, Canales BK, Dominguez-Gutierrez PR. Randall’s Plaque and Calcium Oxalate Stone Formation: Role for Immunity and Inflammation. Nat Rev Nephrol (2021) 17(6):417–33. doi: 10.1038/s41581-020-00392-1 [PubMed] [CrossRef] [Google Scholar] 12. O’Kell AL, Lovett AC, Canales BK, Gower LB, Khan SR. Development of a Two-Stage Model System to Investigate the Mineralization Mechanisms Involved in Idiopathic Stone Formation: Stage 2 In Vivo Studies of Stone Growth on Biomimetic Randall’s Plaque. Urolithiasis (2019) 47(4):335–46. doi: 10.1007/s00240-018-1079-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar] 13. Bird VY, Khan SR. How do Stones Form? Is Unification of Theories on Stone Formation Possible? Arch Esp Urol (2017) 70(1):12–27. [PMC free article] [PubMed] [Google Scholar] 14. Sassanarakkit S, Peerapen P, Thongboonkerd V. Stonemod: A Database for Kidney Stone Modulatory Proteins With Experimental Evidence. Sci Rep (2020) 10(1):15109. doi: 10.1038/s41598-020-71730-3 [PMC free article] [PubMed] [CrossRef] [Google Scholar] 15. Taguchi K, Hamamoto S, Okada A, Unno R, Kamisawa H, Naiki T, et al. . Genome-Wide Gene Expression Profiling of Randall’s Plaques in Calcium Oxalate Stone Formers. J Am Soc Nephrol (2017) 28(1):333–47. doi: 10.1681/ASN.2015111271 [PMC free article] [PubMed] [CrossRef] [Google Scholar] 16. Taguchi K, Okada A, Hamamoto S, Unno R, Moritoki Y, Ando R, et al. . M1/m2-Macrophage Phenotypes Regulate Renal Calcium Oxalate Crystal Development. Sci Rep (2016) 6:35167. doi: 10.1038/srep35167 [PMC free article] [PubMed] [CrossRef] [Google Scholar] 17. Xi J, Chen Y, Jing J, Zhang Y, Liang C, Hao Z, et al. . Sirtuin 3 Suppresses the Formation of Renal Calcium Oxalate Crystals Through Promoting M2 Polarization of Macrophages. J Cell Physiol (2019) 234(7):11463–73. doi: 10.1002/jcp.27803 [PubMed] [CrossRef] [Google Scholar] 18. Dominguez-Gutierrez PR, Kusmartsev S, Canales BK, Khan SR. Calcium Oxalate Differentiates Human Monocytes Into Inflammatory M1 Macrophages. Front Immunol (2018) 9:1863. doi: 10.3389/fimmu.2018.01863 [PMC free article] [PubMed] [CrossRef] [Google Scholar] 19. Zhu W, Zhao Z, Chou F, Zuo L, Liu T, Yeh S, et al. . Loss of the Androgen Receptor Suppresses Intrarenal Calcium Oxalate Crystals Deposition via Altering Macrophage Recruitment/M2 Polarization With Change of the Mir-185-5p/Csf-1 Signals. Cell Death Dis (2019) 10(4):275. doi: 10.1038/s41419-019-1358-y [PMC free article] [PubMed] [CrossRef] [Google Scholar] 20. Patel M, Yarlagadda V, Adedoyin O, Saini V, Assimos DG, Holmes RP, et al. . Oxalate Induces Mitochondrial Dysfunction and Disrupts Redox Homeostasis in a Human Monocyte Derived Cell Line. Redox Biol (2018) 15:207–15. doi: 10.1016/j.redox.2017.12.003 [PMC free article] [PubMed] [CrossRef] [Google Scholar] 21. Anders HJ, Suarez-Alvarez B, Grigorescu M, Foresto-Neto O, Steiger S, Desai J, et al. . The Macrophage Phenotype and Inflammasome Component Nlrp3 Contributes to Nephrocalcinosis-Related Chronic Kidney Disease Independent From Il-1-Mediated Tissue Injury. Kidney Int (2018) 93(3):656–69. doi: 10.1016/j.kint.2017.09.022 [PubMed] [CrossRef] [Google Scholar] 22. Singhto N, Kanlaya R, Nilnumkhum A, Thongboonkerd V. Roles of Macrophage Exosomes in Immune Response to Calcium Oxalate Monohydrate Crystals. Front Immunol (2018) 9:316. doi: 10.3389/fimmu.2018.00316 [PMC free article] [PubMed] [CrossRef] [Google Scholar] 23. Guzel A, Yunusoglu S, Calapoglu M, Candan IA, Onaran I, Oncu M, et al. . Protective Effects of Quercetin on Oxidative Stress-Induced Tubular Epithelial Damage in the Experimental Rat Hyperoxaluria Model. Med (Kaunas) (2021) 57(6):566. doi: 10.3390/medicina57060566 [PMC free article] [PubMed] [CrossRef] [Google Scholar] 24. Azimi A, Eidi A, Mortazavi P, Rohani AH. Protective Effect of Apigenin on Ethylene Glycol-Induced Urolithiasis via Attenuating Oxidative Stress and Inflammatory Parameters in Adult Male Wistar Rats. Life Sci (2021) 279:119641. doi: 10.1016/j.lfs.2021.119641 [PubMed] [CrossRef] [Google Scholar] |
|
來自: 醫(yī)學(xué)鏡界 > 《待分類》