急性呼吸窘迫綜合征(ARDS)可以起源于肺泡的氣體側(cè)或血管側(cè),。盡管冠狀病毒病-2019(COVID-19)的入侵門戶是吸入性的,并且肺泡浸潤通常在胸部X射線或計(jì)算機(jī)斷層掃描(CT)掃描中可發(fā)現(xiàn),,但呼吸窘迫似乎包括一項(xiàng)重要的血管損傷,, 這種血管損傷可能需要采取與常規(guī)ARDS處理的方法不同的治療方法。的確,,不同重癥監(jiān)護(hù)病房的死亡率差異很大,,這有可能是因?yàn)橥夤芾矸椒ǖ貌煌鶎?dǎo)致的,。COVID-19是一種主要損傷血管內(nèi)皮的全身性疾病(COVID-19 is a systemic disease that primarily injures the vascular endothelium),。如果不考慮血管中心特征對(duì)患者進(jìn)行專業(yè)和個(gè)性化的治療,,即使是非老年人或沒有合并癥的COVID-19 ARDS患者(COVID-19 patient with ARDS=“ CARDS”)也可能最終發(fā)展為多器官功能衰竭。給ARDS病人通氣的標(biāo)準(zhǔn)方法通常,,ARDS的特征是非心源性肺水腫,,與分流相關(guān)的低氧血癥和通氣肺尺寸減小(“嬰兒肺”),,這導(dǎo)致呼吸順應(yīng)性低,。在這種情況下,通常通過使用高水平的呼氣末正壓(PEEP),,募集動(dòng)作和俯臥位來實(shí)現(xiàn)募集先前塌陷的肺單位來增加肺的大小,。由于較高的跨肺壓力會(huì)導(dǎo)致整個(gè)肺部應(yīng)急,ARDS肺對(duì)后者的耐受性很差,,因此相對(duì)較低的潮氣量以及對(duì)中度(允許)高碳酸血癥的耐受性,,有助于將呼吸機(jī)誘發(fā)的肺損傷( ventilator-induced lung injury ,VILI)降至最低程度,。確實(shí),,在ARDS的早期階段,在患者疲勞或接受鎮(zhèn)靜劑之前,,與自發(fā)劇烈吸氣導(dǎo)致的的高穿肺壓可能會(huì)造成這種損傷(所謂的患者自發(fā)性肺損傷,,patient self-induced lung injury [P-SILI])。COVID引起呼吸窘迫后不久,,盡管氧合非常差,,患者最初仍保持相對(duì)良好的肺順應(yīng)性。分鐘通氣通常具有很高的特征,。浸潤的程度通常有限,,最初通常以CT上的玻璃樣圖案為特征,表明是間質(zhì)性水腫而非肺泡水腫,,許多患者沒有出現(xiàn)明顯的呼吸困難,。在簡化的模型中,可以將這些患者稱為“ L型”,,其特征是低肺彈性(高順應(yīng)性),,CT掃描估計(jì)的肺重量輕和對(duì)PEEP的反應(yīng)低。對(duì)于許多患者,,該疾病可能穩(wěn)定在此階段而不會(huì)繼續(xù)惡化,。而其他的病人(可能由于疾病的嚴(yán)重程度和宿主反應(yīng)或管理欠佳)可能會(huì)轉(zhuǎn)變?yōu)楦叩湫虯RDS特征的臨床表現(xiàn)。這些可以被定義為“ H型”,,特征是具有廣泛的CT consolidation,,高彈性(低順應(yīng)性),較高的肺重量和對(duì)PEEP反應(yīng)好,。顯然,,L和H型是兩個(gè)極端,之間還包括中間階段,,它們的特征是L及H 的特點(diǎn)重疊,。另一個(gè)特征是高度激活的凝血級(jí)聯(lián)反應(yīng),在肺部和其他器官中普遍存在微血栓和大血栓(圖1),;血清D-二聚體 (D-Dimer)水平非常高與不良預(yù)后相關(guān),。這些觀察結(jié)果表明,不對(duì)稱的內(nèi)皮損傷導(dǎo)致破壞肺血管調(diào)節(jié),,通氣-灌流失調(diào)(最初的低氧血癥的主要原因)并促進(jìn)血栓形成,。此外,如果不加以制止,,呼吸驅(qū)動(dòng)力顯著增加,,可能會(huì)加劇患者施加于高度脆弱的組織的呼吸作用而引起的潮氣壓力和能量負(fù)荷,從而在肺部炎癥性發(fā)作中增加P-SILI ,。在快速發(fā)展的環(huán)境中,,只有公認(rèn)的ARDS肺保護(hù)方法的某些方面在這些不同階段仍然是合理的,。更重要的是,對(duì)血管側(cè)注意力不足(例如,,避免體液過多,,心輸出量需求減少)可能會(huì)無意中促進(jìn)適得其反的反應(yīng)(例如,水腫)和醫(yī)源性損害,。具有良好肺部順應(yīng)性的L型CARDS患者接受的潮氣量(通常為ARDS規(guī)定的潮氣量)為7-8 mL / kg,,而不會(huì)增加VILI的風(fēng)險(xiǎn)。實(shí)際上,,對(duì)于一個(gè)體重為70公斤的人,,其呼吸系統(tǒng)順應(yīng)性為50毫升/厘米水,PEEP為10厘米水,,潮氣量為8毫升/公斤,,產(chǎn)生的平穩(wěn)壓力為21厘米水,驅(qū)動(dòng)壓力為11厘米水,,兩者均遠(yuǎn)低于目前公認(rèn)的VILI保護(hù)閾值(分別為30和15 cm H2O),。較高的VT可以幫助避免因換氣不足而減少潮氣量而導(dǎo)致的重吸收性肺不張和高碳酸血癥。這個(gè)早期階段的關(guān)鍵問題是血管調(diào)節(jié)功能受損,,在這種情況下,,正常的因缺氧而引起的肺血管收縮由于內(nèi)皮損傷而無法發(fā)生,這會(huì)導(dǎo)致通氣-血流失調(diào),,并導(dǎo)致嚴(yán)重的低氧血癥,。臨床醫(yī)生對(duì)Fio2的最初反應(yīng)可能確實(shí)很早就被證明是有效的。如果不充分,,則無創(chuàng)支持(例如高流量鼻O2,,CPAP,Bi-PAP)可穩(wěn)定輕度病例的臨床進(jìn)程,,前提是患者不要施加過多的吸氣努力,。但是,如果通過給予氧氣和無創(chuàng)支持不能降低呼吸驅(qū)動(dòng)力,,則持續(xù)強(qiáng)大的自發(fā)吸氣努力會(huì)同時(shí)增加組織壓力并增加肺部跨血管壓力,,血管流量和體液滲漏(即P-SILI)。然后可能很快出現(xiàn)肺功能(VILI漩渦)進(jìn)行性惡化,。早期插管,,有效鎮(zhèn)靜和/或癱瘓可能會(huì)中斷該周期。以較低的PEEP(8-10 cm H2O)為目標(biāo)是合適的,。通過較高的PEEP或吸氣-呼氣比反轉(zhuǎn)來提高平均跨肺壓,,會(huì)使血流從過度張開的空域重定向,加重高滲透性微血管的壓力,并損害CO2交換,,而不會(huì)廣泛招募功能性肺單元,。如果由于疾病本身和/或P-SILI而導(dǎo)致L型患者的肺水腫增加,則嬰兒肺進(jìn)一步縮小,,并且H型表型逐漸發(fā)展,。將整個(gè)通風(fēng)工作量集中在已經(jīng)負(fù)擔(dān)過重的嬰兒肺部上會(huì)增加其力量暴露和血流量,從而增強(qiáng)其進(jìn)行性損傷的可能性,。導(dǎo)致嬰兒肺部收縮的VILI旋渦有兩個(gè)主要因素:空域 VILI 和灌注血管的應(yīng)力增加(圖2)。隨著時(shí)間的流逝,,疊加的VILI和未經(jīng)檢查的病毒性疾病會(huì)引起炎癥和水腫,,從而促進(jìn)局部和全身性血栓形成,強(qiáng)烈的細(xì)胞因子釋放,,右心室超負(fù)荷和全身器官功能障礙,。在這種晚期狀態(tài)下,建議采用更常規(guī)的肺保護(hù)策略:更高的PEEP(≤15 cm H2O),,更低的潮氣量(6 mL / kg)和俯臥位,,同時(shí)將氧耗降至最低。無論哪種類型疾病,,漸進(jìn)脫機(jī)都應(yīng)謹(jǐn)慎(表),。COVID-19會(huì)導(dǎo)致獨(dú)特的肺損傷。將患者分類為具有L型或H型表型可能會(huì)有所幫助,。采取不同的通氣方法,,具體取決于患者的基礎(chǔ)生理狀況。Management of COVID-19 Respiratory DistressJohn J. Marini, MD1; Luciano Gattinoni, MD2Author Affiliations Article InformationJAMA. Published online April 24, 2020. doi:10.1001/jama.2020.6825Corresponding Author: John J. Marini, MD, Regions Hospital, University of Minnesota, 640 Jackson St, MS11203B, St Paul, MN 55101 ([email protected]).Published Online: April 24, 2020. doi:10.1001/jama.2020.6825Conflict of Interest Disclosures: Dr Gattinoni reported receiving fees from General Electric for ventilator development and seminars; a grant from Estor for technical equipment and to perform a study; fees from Masimo for technical consultation and Nutrivent; and a patent licensed to Sidam Biomedical Solutions for development of an esophageal balloon for the measurement of esophageal pressure together with enteral feeding.Grasselli G? , Zangrillo A? , Zanella A? , et al; COVID-19 Lombardy ICU Network. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. ? JAMA. 2020. Published online April 6, 2020. doi:10.1001/jama.2020.5394ArticlePubMedGoogle ScholarArentz M? , Yim E? , Klaff L? , et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. ? JAMA. 2020. Published online March 19, 2020. doi:10.1001/jama.2020.4326ArticlePubMedGoogle ScholarWang D? , Hu B? , Hu C? , et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. ? JAMA. 2020;323(11):1061-1069. doi:10.1001/jama.2020.1585ArticlePubMedGoogle ScholarCrossrefGattinoni L? , Marini JJ? , Pesenti A? , Quintel M? , Mancebo J? , Brochard L? . The “baby lung” became an adult. ? Intensive Care Med. 2016;42(5):663-673. doi:10.1007/s00134-015-4200-8PubMedGoogle ScholarCrossrefBrochard L? , Slutsky A? , Pesenti A? . Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. ? Am J Respir Crit Care Med. 2017;195(4):438-442. doi:10.1164/rccm.201605-1081CPPubMedGoogle ScholarCrossrefGattinoni L? , Chiumello D? , Caironi P? , et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? ? Intensive Care Med. 2020. doi:10.1007/s00134-020-06033-2PubMedGoogle ScholarZhou F? , Yu T? , Du R? , et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. ? Lancet. 2020;395(10229):1054-1062. doi:10.1016/S0140-6736(20)30566-3PubMedGoogle ScholarCrossrefMarini JJ? , Rocco PRM? , Gattinoni L? . Static and dynamic contributors to ventilator-induced lung injury in clinical practice. pressure, energy, and power. ? Am J Respir Crit Care Med. 2020;201(7):767-774. doi:10.1164/rccm.201908-1545CIPubMedGoogle ScholarCrossrefVieillard-Baron A? , Matthay M? , Teboul JL? , et al. Experts’ opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. ? Intensive Care Med. 2016;42(5):739-749. doi:10.1007/s00134-016-4326-3PubMedGoogle ScholarCrossrefMarini JJ? , Hotchkiss JR? , Broccard AF? . Bench-to-bedside review: microvascular and airspace linkage in ventilator-induced lung injury. ? Crit Care. 2003;7(6):435-444. doi:10.1186/cc2392PubMedGoogle ScholarCrossref
|