久久国产成人av_抖音国产毛片_a片网站免费观看_A片无码播放手机在线观看,色五月在线观看,亚洲精品m在线观看,女人自慰的免费网址,悠悠在线观看精品视频,一级日本片免费的,亚洲精品久,国产精品成人久久久久久久

分享

網(wǎng)絡(luò)公開課資源

 openlog 2015-10-06

網(wǎng)絡(luò)公開課資源 ——關(guān)注CS/AI/Math

當(dāng)當(dāng)當(dāng)當(dāng)~請看這個網(wǎng)址 - http://www./ - 它是一個列表,,列出幾大在線課程網(wǎng)站(有英文字幕和習(xí)題就是好啊^^)的課程表 (比網(wǎng)易云課堂更原汁原味哦,,現(xiàn)在也可以看課程圖譜,,學(xué)累了可以輕松幾分鐘 ,還有浙大的計算機(jī)中的數(shù)學(xué))

這些都是新課,,在網(wǎng)上正在上的課,。之前的MIT OCW(數(shù)學(xué)課很厲害,CS在這里)是已經(jīng)結(jié)束了的課,,有Multimedia content標(biāo)志的課值得一聽,。

這些新課好多都是CS的:

最近剛結(jié)束的有Introduction to AI , Introduction to Databases(SQL,OLAP,NoSQL) and Introduction to Machine Learning 

正on live的有Probabilistic Graphical Models, Natural Language Processing, Design and Analysis of Algorithms I,CS 101: Building a Search Engine

即將開始的有Introduction to Machine Learning, Learning from Data ( Introductory Machine Learning course),Computer Vision, CS212 - The Design of Computer Programs,


 

Stanford engineering everywhere - http://see./see/courses.aspx 

Some mathematical details and derivations have been omitted in this course, since this is CS229a - Applied Machine Learning at Stanford. The course with complete Mathematical Depth ( but lesser emphasis on practical application ) is CS229 - Machine Learning. In case you are interested in more algorithms, reinforcement learning and the mathematical derivation for some of the methods, you might find it interesting and useful to take a look at the regular CS229 notes.
The problem sets are also mathematical and challenging.
Standford wiki for unsupervised learning


Harvard university extension school - http://www.extension./courses/subject/computer-science

http://www.extension./open-learning-initiative/math-sets-probability



Machine Learning  -Spring 2011

Carnegie Mellon University,大名鼎鼎的 Tom Mitchell 

 

http://www.cs./~tom/10701_sp11/lectures.shtml

with videos, assignments, exams and solutions (also slides, exercises and exams available for the previous 9 installments of the course).
It's <machine learning theory>, focusing on theoretical aspects of machine learning, I think it may consider as a advanced theory foundation to machine learning course.

 

Google Code University

https://code.google.com/edu/ 

Top Viewed Courses

想去Google的絕對不能錯過(原諒我用這么大大的logo ^^)


Machine Learning Summer School 2009, organized by Cambridge, I found a lot of great ML scientists here given lectures, such as Christopher Bishop, David Blei, and Michael I. Jordan. Unfortunately my network is a little bad and cannot download from videolectures
Lectures from Machine Learning Summer School 2011 - Bordeaux
http:///mlss2011_bordeaux/
p.s. Checked the archives, there are some resources from already, but it looks mlss2011_bordeaux hasn't been posted yet.

更多的好網(wǎng)站可以看quora上的這個各抒己見

其他一些課程合輯:

http://www./course/show_subject/24

http://www.douban.com/group/opencourse/

http://www./forum.php?mod=forumdisplay&fid=130 



IntelligentTrading blog
for those interested in applications of machine learning to trading! Mostly practical examples for the laymen(非專業(yè)人員), pretty well explained.
Some other basic course materials
These contains statistical Data mining tutorials from Andrew Moore
Another tutorial
Notations are different, might have to map it properly.

一些數(shù)學(xué):
Matrix
http://www./modules/ordering.htm

Pre Calculus - don't know if this is helpful for the class
Another good resource is Gil Strang's excellent MIT Linear Algebra course
An interesting (and funny) lecture discussing limitations of the neural networks: http://www./user/GoogleTechTalks#p/search/0/AyzOUbkUf3M

Scientific books and papers on AI. Interesting, but advanced: http://www./subject/compu

The Matrix and Quaternions FAQ
http://www./documents/matrfaq.html

    本站是提供個人知識管理的網(wǎng)絡(luò)存儲空間,,所有內(nèi)容均由用戶發(fā)布,,不代表本站觀點(diǎn)。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,,謹(jǐn)防詐騙,。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點(diǎn)擊一鍵舉報,。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多