責(zé)編:過(guò)凌洋 校對(duì):過(guò)紅興蘑菇在傳統(tǒng)醫(yī)學(xué)中已有數(shù)千年的應(yīng)用歷史。[1,2]蘑菇和酵母等真菌富含一種叫做β-葡聚糖的化合物,,具有抗病毒和增強(qiáng)免疫力的作用,。[3,4]蘑菇在傳統(tǒng)醫(yī)學(xué)中已有數(shù)千年的應(yīng)用歷史。[1,2]蘑菇和酵母等真菌富含一種叫做β-葡聚糖的化合物,,具有抗病毒和增強(qiáng)免疫力的作用,。[3,4]人體研究表明,服用β-葡聚糖可增強(qiáng)免疫反應(yīng),, [5]減少上呼吸道感染(如感冒和流感)的次數(shù),、嚴(yán)重程度和持續(xù)時(shí)間,[6-8] 并緩解季節(jié)性過(guò)敏癥狀,。[9]研究人員已經(jīng)確定了三種具有特別強(qiáng)的免疫益處的蘑菇:香菇[10] ,、舞茸[11]和白樺茸[12]將分離的β-葡聚糖與蘑菇提取物相結(jié)合可以提供全面的免疫支持益處。 β-葡聚糖是附著在真菌,、細(xì)菌和燕麥等全谷物壁內(nèi)的多糖,。蘑菇中β-葡聚糖含量特別高,也可從酵母中分離出來(lái),。 它們有助于維持免疫健康,,增強(qiáng)對(duì)病毒和其他病原體的防御能力。[13-15] 臨床前研究還表明,,它們可以降低內(nèi)毒素(引起炎癥的細(xì)菌感染產(chǎn)生的有害副產(chǎn)物)的影響。[16,17] 免疫反應(yīng)有兩種類型:先天性和適應(yīng)性,。[18,19]先天 免疫是人體的第一道防線,。巨噬細(xì)胞吞噬并中和病毒和其他病原體,而自然殺傷 (NK) 細(xì)胞則瞄準(zhǔn)并摧毀癌變或被病毒和其他病原體感染的不健康細(xì)胞,。 適應(yīng)性免疫是一種更具體,、更有針對(duì)性的反應(yīng),在接觸特定病原體后產(chǎn)生,,并提供長(zhǎng)期保護(hù),。這種反應(yīng)由T 細(xì)胞和B 細(xì)胞驅(qū)動(dòng)。 β-葡聚糖可激活和刺激先天免疫和適應(yīng)性免疫,。[10,20,21] 隨著年齡的增長(zhǎng),,我們的免疫系統(tǒng)會(huì)變?nèi)酰サ挚垢腥竞桶┌Y的能力,,這種情況稱為免疫衰老,。 動(dòng)物研究表明,攝入β-葡聚糖可以預(yù)防甚至逆轉(zhuǎn)免疫衰老。[20,22] 更新這些免疫反應(yīng)對(duì)老年人來(lái)說(shuō)尤為重要,。 蘑菇含有有益健康的化合物,,包括吲哚、多酚和類胡蘿卜素,。 β-葡聚糖是蘑菇中發(fā)現(xiàn)的具有生物活性的免疫支持化合物之一,。[23] 有數(shù)千種蘑菇對(duì)健康有益。[24]已發(fā)現(xiàn)三種具有特別強(qiáng)的免疫作用的蘑菇是:香菇,,舞茸和白樺茸,。 香菇香菇長(zhǎng)期以來(lái)一直被用于傳統(tǒng)中藥。 在嚴(yán)重細(xì)菌性肺部感染的動(dòng)物模型中,,香菇中的β-葡聚糖顯著減少了肺部的細(xì)菌負(fù)荷并改善了健康狀況,。[25] 細(xì)胞研究表明,香菇可以滅活病毒并下調(diào)病毒復(fù)制,。[26,27] 臨床研究表明,,這些增強(qiáng)免疫力的效果可能是由于香菇能夠增加免疫系統(tǒng)細(xì)胞的數(shù)量,包括 T 細(xì)胞和 NK 細(xì)胞,。[10] 香菇還能減少有害慢性炎癥的標(biāo)志物,,并刺激保護(hù)腸道的抗體的分泌。[10] 舞茸舞茸經(jīng)常用于亞洲美食,,也能提供強(qiáng)大的免疫益處,。 在動(dòng)物研究中,舞茸提取物顯著增加了NK 細(xì)胞和細(xì)菌消除能力,。[28,29]與香菇提取物混合時(shí),,這種效果更加明顯。[29] 舞茸提取物還能促進(jìn)干擾素γ(IFN-γ)的分泌,,干擾素γ是一種能阻止病毒復(fù)制的蛋白質(zhì),。[29] 白樺茸白樺茸原產(chǎn)于寒冷氣候區(qū),通常生長(zhǎng)在樺樹上,。它們是免疫調(diào)節(jié)劑,,臨床前研究表明,白樺茸提取物具有抗病毒活性,。[30] 在一項(xiàng)針對(duì)免疫功能低下的小鼠的研究中,,白樺茸提取物使免疫細(xì)胞恢復(fù)到接近正常水平,并調(diào)節(jié)炎癥標(biāo)志物腫瘤壞死因子 α (TNF-α)的水平,,這表明白樺茸提取物可以預(yù)防過(guò)度炎癥,。[31] 在臨床前研究中,白樺茸提取物還表現(xiàn)出對(duì)抗多種病毒的有益活性,。[12,30,32] 研究表明,,β-葡聚糖有助于預(yù)防和治療細(xì)菌,、病毒和寄生蟲感染。[33-35]在多項(xiàng)安慰劑對(duì)照的人體試驗(yàn)中,,參與者被隨機(jī)分配接受β-葡聚糖或安慰劑,。這些試驗(yàn)每天至少使用250 毫克β-葡聚糖。 β-葡聚糖組的參與者有:[5-8,36,37] - 更高水平的唾液抗體,可抵御呼吸道和消化道病原體,。
另一項(xiàng)研究調(diào)查了β-葡聚糖對(duì)患有中度季節(jié)性豚草過(guò)敏的成年人的影響,。與安慰劑相比,每天服用250 毫克β-葡聚糖的人過(guò)敏癥狀的持續(xù)時(shí)間和強(qiáng)度有所減少,,睡眠,、生活質(zhì)量、精力和情緒也有所改善,。[9]真菌,包括蘑菇和酵母,,富含多種具有免疫支持功效的活性化合物,,包括β-葡聚糖。 在人體試驗(yàn)中,,服用β-葡聚糖可以減少上呼吸道感染(包括感冒和流感)的次數(shù)和持續(xù)時(shí)間,,并緩解季節(jié)性過(guò)敏癥狀。 在一項(xiàng)觀察性研究的薈萃分析中,,吃蘑菇最多的人患癌癥的風(fēng)險(xiǎn)比不吃蘑菇的人低 34% ,。 將β-葡聚糖與具有免疫力支持的香菇、舞茸和白樺茸提取物相結(jié)合,,可以增強(qiáng)免疫系統(tǒng)抵抗感染和其他疾病的能力。 消化道內(nèi)有多種微生物,。平衡的微生物群對(duì)抗擊感染和維持免疫健康至關(guān)重要,。[38]葡聚糖和蘑菇增強(qiáng)免疫力的一種方式是促進(jìn)腸道中健康微生物的生長(zhǎng)。β-葡聚糖是一種益生元纖維,,可以滋養(yǎng)有益細(xì)菌,。[13,39]臨床前和臨床研究表明,健康的微生物群有助于增強(qiáng)免疫反應(yīng),、維持腸道內(nèi)壁和消化系統(tǒng)健康,,并抑制致病細(xì)菌和炎癥的生長(zhǎng),。[13,40-42]此外,β-葡聚糖還能促進(jìn)短鏈脂肪酸的產(chǎn)生,,而短鏈脂肪酸對(duì)于腸道健康和維持腸道屏障的完整性至關(guān)重要,。[13,40,42]2024 年 9 月,賓夕法尼亞州立大學(xué)醫(yī)學(xué)院的科學(xué)家 發(fā)表了一項(xiàng)涉及30,000 多人 的隊(duì)列研究的結(jié)果,。他們還將數(shù)據(jù)納入了一項(xiàng)前瞻性研究的薈萃分析中,,該研究涉及600,000多名參與者,探討了蘑菇攝入量與 死亡率 之間的關(guān)系 ,。[43]他們發(fā)現(xiàn),, 蘑菇消費(fèi)量 越高,因任何原因?qū)е?nbsp;的 死亡風(fēng)險(xiǎn)就越低,。這項(xiàng)研究有幾個(gè)主要優(yōu)勢(shì),,包括它分析了美國(guó)成年人口的全國(guó)代表性樣本,并涉及世界各地隊(duì)列研究的非常全面的薈萃分析,。正常運(yùn)作時(shí),,免疫系統(tǒng)可以識(shí)別并消滅癌細(xì)胞。通過(guò)增強(qiáng)免疫力,,蘑菇可以提高這種能力,。一項(xiàng)觀察性研究的薈萃分析納入了 615,000 多人,其中近20,000人在 1966 年至 2020 年期間是癌癥患者,,結(jié)果發(fā)現(xiàn),,與食用蘑菇最少的人相比,食用蘑菇最多的人患癌癥的風(fēng)險(xiǎn)降低了34% ,。[44]香菇,、舞茸和白樺茸中的 β-葡聚糖和其他化合物可增強(qiáng)保護(hù)性信號(hào)蛋白的活性,從而抑制腫瘤細(xì)胞的生長(zhǎng),。[30】這些蘑菇中的β-葡聚糖和提取物的組合可以提供多種免疫支持化合物,。蘑菇作為藥用已有數(shù)千年歷史。研究表明,,蘑菇含有一種名為β-葡聚糖 的化合物,,這種化合物可增強(qiáng)免疫力和腸道健康,并有助于預(yù)防病毒和癌癥,。從酵母中分離出的β-葡聚糖與香菇,、舞茸和白樺茸提取物的混合物可以提供全面的免疫支持益處。參考文獻(xiàn): Stamets P, Zwickey H. Medicinal Mushrooms: Ancient Remedies Meet Modern Science. Integr Med (Encinitas). 2014 Feb;13(1):46-7. Ray P, Kundu S, Paul D. Exploring the therapeutic properties of chinese mushrooms with a focus on their anti-cancer effects: A systemic review. Pharmacological Research - Modern Chinese Medicine. 2024 2024/06/01/;11:100433. Cerletti C, Esposito S, Iacoviello L. Edible Mushrooms and Beta-Glucans: Impact on Human Health. Nutrients. 2021 Jun 25;13(7). Seo DJ, Choi C. Antiviral Bioactive Compounds of Mushrooms and Their Antiviral Mechanisms: A Review. Viruses. 2021 Feb 23;13(2). Carpenter KC, Breslin WL, Davidson T, et al. Baker’s yeast beta-glucan supplementation increases monocytes and cytokines post-exercise: implications for infection risk? Br J Nutr. 2013 Feb 14;109(3):478-86. Mah E, Kaden VN, Kelley KM, et al. Beverage Containing Dispersible Yeast beta-Glucan Decreases Cold/Flu Symptomatic Days After Intense Exercise: A Randomized Controlled Trial. J Diet Suppl. 2020;17(2):200-10. McFarlin BK, Carpenter KC, Davidson T, et al. Baker’s yeast beta glucan supplementation increases salivary IgA and decreases cold/flu symptomatic days after intense exercise. J Diet Suppl. 2013 Sep;10(3):171-83. Feldman S, Schwartz H, Kalman D, et al. Randomized Phase II Clinical Trials of Wellmune WGP? for Immune Support During Cold and Flu Season. J Appl Res. 2009 01/01;9. Talbott SM, Talbott JA, Talbott TL, et al. beta-Glucan supplementation, allergy symptoms, and quality of life in self-described ragweed allergy sufferers. Food Sci Nutr. 2013 Jan;1(1):90-101. Dai X, Stanilka JM, Rowe CA, et al. Consuming Lentinula edodes (Shiitake) Mushrooms Daily Improves Human Immunity: A Randomized Dietary Intervention in Healthy Young Adults. J Am Coll Nutr. 2015;34(6):478-87. Wu JY, Siu KC, Geng P. Bioactive Ingredients and Medicinal Values of Grifola frondosa (Maitake). Foods. 2021 Jan 5;10(1). Lu Y, Jia Y, Xue Z, et al. Recent Developments in Inonotus obliquus (Chaga mushroom) Polysaccharides: Isolation, Structural Characteristics, Biological Activities and Application. Polymers (Basel). 2021 Apr 29;13(9):1441. Ciecierska A, Drywien ME, Hamulka J, et al. Nutraceutical functions of beta-glucans in human nutrition. Rocz Panstw Zakl Hig. 2019;70(4):315-24. Jin Y, Li P, Wang F. beta-glucans as potential immunoadjuvants: A review on the adjuvanticity, structure-activity relationship and receptor recognition properties. Vaccine. 2018 Aug 23;36(35):5235-44. Wang G, Li Z, Tian M, et al. beta-Glucan Induces Training Immunity to Promote Antiviral Activity by Activating TBK1. Viruses. 2023 May 19;15(5). Smiderle FR, Alquini G, Tadra-Sfeir MZ, et al. Agaricus bisporus and Agaricus brasiliensis (1-->6)-beta-D-glucans show immunostimulatory activity on human THP-1 derived macrophages. Carbohydr Polym. 2013 Apr 15;94(1):91-9. Cheng J, Zhang G, Liu L, et al. Anti-inflammatory activity of beta-glucans from different sources before and after fermentation by fecal bacteria in vitro. J Sci Food Agric. 2024 Jan 30;104(2):1116-31. Available at: https://www./the-innate-and-adaptive-immune-systems.html. Accessed September 5, 2024. Marshall JS, Warrington R, Watson W, et al. An introduction to immunology and immunopathology. Allergy, Asthma & Clinical Immunology. 2018 2018/09/12;14(2):49. Song L, Yuan J, Ni S, et al. Enhancement of adaptive immune responses of aged mice by dietary intake of beta-glucans, with special emphasis on anti-aging activity. Mol Immunol. 2020 Jan;117:160-7. Cognigni V, Ranallo N, Tronconi F, et al. Potential benefit of beta-glucans as adjuvant therapy in immuno-oncology: a review. Explor Target Antitumor Ther. 2021;2(2):122-38. Xu X, Yang J, Ning Z, et al. Lentinula edodes-derived polysaccharide rejuvenates mice in terms of immune responses and gut microbiota. Food Funct. 2015 Aug;6(8):2653-63. Riaz S, Ahmad A, Farooq R, et al. Edible Mushrooms, a Sustainable Source of Nutrition, Biochemically Active Compounds and Its Effect on Human Health. In: Naofumi S, Anna S, editors. Current Topics in Functional Food. Rijeka: IntechOpen; 2022:Ch. 12. Anusiya G, Gowthama Prabu U, Yamini NV, et al. A review of the therapeutic and biological effects of edible and wild mushrooms. Bioengineered. 2021 Dec;12(2):11239-68. Masterson CH, Murphy EJ, Gonzalez H, et al. Purified beta-glucans from the Shiitake mushroom ameliorates antibiotic-resistant Klebsiella pneumoniae-induced pulmonary sepsis. Lett Appl Microbiol. 2020 Oct;71(4):405-12. Ren G, Xu L, Lu T, et al. Structural characterization and antiviral activity of lentinan from Lentinus edodes mycelia against infectious hematopoietic necrosis virus. Int J Biol Macromol. 2018 Aug;115:1202-10. Rincao VP, Yamamoto KA, Ricardo NM, et al. Polysaccharide and extracts from Lentinula edodes: structural features and antiviral activity. Virol J. 2012 Feb 15;9:37. Hou L, Meng M, Chen Y, et al. A water-soluble polysaccharide from Grifola frondosa induced macrophages activation via TLR4-MyD88-IKKbeta-NF-kappaB p65 pathways. Oncotarget. 2017 Oct 17;8(49):86604-14. Vetvicka V, Vetvickova J. Immune-enhancing effects of Maitake (Grifola frondosa) and Shiitake (Lentinula edodes) extracts. Ann Transl Med. 2014 Feb;2(2):14. Fordjour E, Manful CF, Javed R, et al. Chaga mushroom: a super-fungus with countless facets and untapped potential. Front Pharmacol. 2023;14:1273786. Kim YR. Immunomodulatory Activity of the Water Extract from Medicinal Mushroom Inonotus obliquus. Mycobiology. 2005 Sep;33(3):158-62. Shibnev VA, Garaev TM, Finogenova MP, et al. [Antiviral activity of aqueous extracts of the birch fungus Inonotus obliquus on the human immunodeficiency virus]. Vopr Virusol. 2015;60(2):35-8. Ji L, Sun G, Li J, et al. Effect of dietary beta-glucan on growth, survival and regulation of immune processes in rainbow trout (Oncorhynchus mykiss) infected by Aeromonas salmonicida. Fish Shellfish Immunol. 2017 May;64:56-67. Udayangani RMC, Dananjaya SHS, Fronte B, et al. Feeding of nano scale oats beta-glucan enhances the host resistance against Edwardsiella tarda and protective immune modulation in zebrafish larvae. Fish Shellfish Immunol. 2017 Jan;60:72-7. Yun CH, Estrada A, Van Kessel A, et al. Beta-glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. FEMS Immunol Med Microbiol. 2003 Jan 21;35(1):67-75. McFarlin BK, Venable AS, Carpenter KC, et al. Oral Supplementation with Baker’s Yeast Beta Glucan Is Associated with Altered Monocytes, T Cells and Cytokines following a Bout of Strenuous Exercise. Front Physiol. 2017;8:786. Talbott S, Talbott J. Effect of BETA 1, 3/1, 6 GLUCAN on Upper Respiratory Tract Infection Symptoms and Mood State in Marathon Athletes. J Sports Sci Med. 2009;8(4):509-15. Wiertsema SP, van Bergenhenegouwen J, Garssen J, et al. The Interplay between the Gut Microbiome and the Immune System in the Context of Infectious Diseases throughout Life and the Role of Nutrition in Optimizing Treatment Strategies. Nutrients. 2021 Mar 9;13(3). Shoukat M, Sorrentino A. Cereal β‐glucan: a promising prebiotic polysaccharide and its impact on the gut health. International Journal of Food Science & Technology. 2021;56(5):2088-97. Jayachandran M, Chen J, Chung SSM, et al. A critical review on the impacts of beta-glucans on gut microbiota and human health. J Nutr Biochem. 2018 Nov;61:101-10. Jayachandran M, Xiao J, Xu B. A Critical Review on Health Promoting Benefits of Edible Mushrooms through Gut Microbiota. Int J Mol Sci. 2017 Sep 8;18(9). Mitsou EK, Saxami G, Stamoulou E, et al. Effects of Rich in Beta-Glucans Edible Mushrooms on Aging Gut Microbiota Characteristics: An In Vitro Study. Molecules. 2020 Jun 18;25(12). Ba DM, Gao X, Al-Shaar L, et al. Prospective study of dietary mushroom intake and risk of mortality: results from continuous National Health and Nutrition Examination Survey (NHANES) 2003-2014 and a meta-analysis. Nutr J. 2021 Sep 21;20(1):80. Ba DM, Ssentongo P, Beelman RB, et al. Higher Mushroom Consumption Is Associated with Lower Risk of Cancer: A Systematic Review and Meta-Analysis of Observational Studies. Adv Nutr. 2021 Oct 1;12(5):1691-704.
|