自上世紀(jì)以來(lái),,AKG(α-酮戊二酸)靠著促進(jìn)骨骼發(fā)育和增加免疫力的功效,,成為深受好評(píng)的營(yíng)養(yǎng)補(bǔ)劑[1]。隨研究的不斷深入,,又陸續(xù)發(fā)現(xiàn)AKG還具降低細(xì)胞毒性和治療胃腸疾病的作用[2],。 直到2014年,“抗衰國(guó)師”Brian Kennedy教授于頂級(jí)期刊《Nature》發(fā)文,,披露AKG的新發(fā)現(xiàn)——延壽50%[3],,自那時(shí)起,學(xué)界認(rèn)為AKG或?qū)⒊蔀楸臼兰o(jì)最值得期待的有效抗衰補(bǔ)劑[4],。 在前段時(shí)間的會(huì)員采訪中,,我們也了解到,不同會(huì)員在服用AKG后,,身體變化不盡相同,。那么,AKG究竟有哪些認(rèn)證的抗衰效用,?目前服用的安全性又怎樣呢,? AKG,是ATP的前體物質(zhì)和氨基酸的合成底物,,可以產(chǎn)生能量并合成人體必備蛋白質(zhì),,從而提高線粒體功能,增強(qiáng)細(xì)胞修復(fù)能力[4],。 隨年齡的增長(zhǎng),,我們機(jī)體的新陳代謝能力逐漸下降,,而且AKG在細(xì)胞中的作用時(shí)間又極其短暫(小于5分鐘),因此容易造成AKG水平不足,,引發(fā)免疫功能下降和代謝失調(diào)等問(wèn)題,,并增加老年性相關(guān)疾病的患病風(fēng)險(xiǎn)[5]。 此時(shí),,就需要通過(guò)外源性AKG的補(bǔ)充,,提高細(xì)胞活性,延長(zhǎng)健康壽命[5],。 經(jīng)研究證明,,AKG可刺激FoxO、DAF-16,、SIRT等長(zhǎng)壽基因的表達(dá),,并且抑制炎癥相關(guān)NF-κB信號(hào)通路的激活,降低促炎因子水平,,減緩炎性衰老速率[6],。 2014年,《Nature》發(fā)表綜述再證,,AKG還可通過(guò)熱量限制調(diào)節(jié)代謝相關(guān)通路,,體現(xiàn)出抗衰的潛在價(jià)值[7]。 No.1 AKG可作為熱量限制模擬物 細(xì)胞中存在著大量可促進(jìn)能量代謝的ATP合酶,,AKG可與ATP合酶上的β亞基結(jié)合,,降低ATP的合成速率和數(shù)量,減少線粒體中能量的產(chǎn)生,,這一過(guò)程也正是熱量限制的典型標(biāo)志[6],。 當(dāng)ATP含量過(guò)低時(shí),會(huì)激活A(yù)MPK信號(hào)通路傳導(dǎo),,進(jìn)而抑制mTOR信號(hào)通路的表達(dá)[7],。AKG通過(guò)這一途徑,將衰老細(xì)胞調(diào)節(jié)至正常的代謝水平,。 圖:AKG的通路調(diào)節(jié)機(jī)制 作為上世紀(jì)公認(rèn)的抗氧化物質(zhì),近幾年發(fā)表的文章進(jìn)一步證實(shí),,AKG可減少與年齡相關(guān)的氧化應(yīng)激,,預(yù)防衰老[8][9]。 No.2 AKG可以作為外源性抗氧化劑服用,,發(fā)揮兩類抗氧化作用 直接清除自由基 AKG可直接破壞H2O2的分子結(jié)構(gòu),,從根源上降低H2O2產(chǎn)生的氧化毒性,并減弱其形成更高毒性自由基的能力[10],。 增強(qiáng)內(nèi)源性抗氧化防御系統(tǒng)能力 外源性AKG的補(bǔ)充,,可以激活抗氧化防御系統(tǒng)酶的活性,,并增加熱休克蛋白HSP 60和HSP 90的合成,提高細(xì)胞活性和代謝免疫能力,,有助于減緩生物體內(nèi)的衰老進(jìn)程[11],。 圖:AKG的抗氧化功能及其應(yīng)用 2020年,AKG相關(guān)研究的重點(diǎn)開(kāi)始轉(zhuǎn)向臨床,,《Nature》子刊發(fā)文表明,,AKG對(duì)老年人士的結(jié)腸癌療效顯著,這一發(fā)現(xiàn)也使AKG的抗癌,、抗腫瘤能力獲得廣泛關(guān)注[12],。 No.3 AKG具有抗腫瘤特性 外源性AKG的補(bǔ)充,限制了促進(jìn)腫瘤細(xì)胞分化的HIF-1α亞基的表達(dá),,并降低HIF-1α亞基與蛋白連接的能力,,從而減少促紅細(xì)胞生成素的產(chǎn)生,紅細(xì)胞和血管的生成減少抑制了腫瘤細(xì)胞的生長(zhǎng)和擴(kuò)散[13],。 去年11月,,Kennedy教授經(jīng)長(zhǎng)達(dá)7年的臨床試驗(yàn)統(tǒng)計(jì),在《Aging》發(fā)文,,稱平均服用Rejuvant?(AKG膳食補(bǔ)充劑品牌)7個(gè)月,,可將受試者年齡逆轉(zhuǎn)8歲[14]。 No.4 AKG可調(diào)節(jié)表觀遺傳表型 AKG作為去甲基化酶的重要底物,,可有效降低DNA和組蛋白的甲基化水平,,逆轉(zhuǎn)表觀和內(nèi)部功能的老化[15]。 然而甲基化水平也不宜降得過(guò)低,,不然反而會(huì)干擾染色質(zhì)功能,,不過(guò)別擔(dān)心,AKG同時(shí)還具有“防抱死”功能,。它在激活去甲基化酶的同時(shí),,可通過(guò)三羧酸循環(huán)產(chǎn)生的代謝產(chǎn)物,把過(guò)量的去甲基化酶分解掉,,將體內(nèi)的甲基化程度維持在適當(dāng)?shù)乃絒15],。 圖:AKG調(diào)節(jié)表觀遺傳表型 時(shí)至今日,AKG的抗衰成果還如雨后春筍般出現(xiàn),。今年4月,,來(lái)自我國(guó)武漢科研團(tuán)隊(duì)研制出的AKG面霜,僅涂抹56天就能使面部皮膚皺紋顯著減少23.64%,,同時(shí)可修復(fù)受損屏障,,達(dá)到良好保濕效果[16]。 圖:綠色部分顯示為面部皺紋 而8月的最新臨床研究中,,研究人員又發(fā)現(xiàn)AKG可維持附睪平滑肌細(xì)胞內(nèi)的酸堿平衡,,為精子的發(fā)育和成熟提供穩(wěn)定的內(nèi)部環(huán)境,,或?qū)⒊蔀槟行陨乘ダ系臓I(yíng)養(yǎng)干預(yù)補(bǔ)劑[17]。 目前,,AKG已獲得FDA批準(zhǔn),,作為安全的膳食補(bǔ)充劑上市,Kennedy教授也推出了旗下的AKG補(bǔ)劑品牌,。然而,,面對(duì)琳瑯滿目的AKG相關(guān)補(bǔ)劑,我們?cè)撊绾畏茫?/p> No.1 為延壽,,到底該怎么做,? 根據(jù)臨床統(tǒng)計(jì),AKG膳食補(bǔ)充劑可以提高肌肉質(zhì)量,,改善骨質(zhì)疏松,,對(duì)神經(jīng)衰退性疾病、心血管疾病,、肝病和腎病起到有效治療[18],。 學(xué)界給出的每日安全的服用劑量范圍是3.6-6g,當(dāng)下最有效的給藥途徑分別為:口服和靜脈注射,,并且建議最好采用間歇式給藥的方式進(jìn)行補(bǔ)充[19][20],。 而且AKG還被發(fā)現(xiàn)可與鈣、鈉,、精氨酸或鳥(niǎo)氨酸類膳食產(chǎn)品聯(lián)合使用,,在提高體內(nèi)氨基酸合成的同時(shí),降低胰島素水平,,多種補(bǔ)劑的協(xié)同可使AKG發(fā)揮出更好的抗衰作用[19],。 No.2 一些小副作用,但也不容忽視 然而,,在這些臨床數(shù)據(jù)中,,也不乏存在一些不容忽視的負(fù)面作用。 AKG因只能被胃腸道細(xì)胞吸收,,所以極易造成胃腸道的吸收和代謝壓力[21],,引發(fā)惡心、腹脹,、嘔吐和腹瀉等副作用[22],。 對(duì)此,目前仍未找到有效手段去緩解,,因此學(xué)界呼吁應(yīng)進(jìn)行更多的AKG臨床研究,,早日找到人體的最佳服用劑量,。 時(shí)光派點(diǎn)評(píng) 就現(xiàn)在而言,,營(yíng)養(yǎng)補(bǔ)劑市場(chǎng)的不斷擴(kuò)大,,也使AKG的膳食補(bǔ)劑產(chǎn)品逐漸豐富,然而服用安全和抗衰效果永遠(yuǎn)是我們最為關(guān)注的問(wèn)題,。 派派謹(jǐn)以此文梳理出AKG的可靠抗衰效用,,及學(xué)界的有效服用建議,希望能為尚且觀望或正在服用的大家提供全方位科普,。 當(dāng)然,,膳食補(bǔ)劑的安全性是在不斷地驗(yàn)證的,現(xiàn)在仍未有結(jié)論能夠完全證明AKG對(duì)全年齡段的無(wú)毒作用,,因此在服用之前,,還是要根據(jù)自身身體狀況,做出合理選擇,。 —— TIMEPIE —— 參考文獻(xiàn) [1] Dulaney, M. D., Jr, Brumley, M., Willis, J. T., & Hume, A. S. (1991). Protection against cyanide toxicity by oral alpha-ketoglutaric acid. Veterinary and human toxicology, 33(6), 571–575. [2] Sheu, K. F., & Blass, J. P. (1999). The alpha-ketoglutarate dehydrogenase complex. Annals of the New York Academy of Sciences, 893, 61–78. https:///10.1111/j.1749-6632.1999.tb07818.x [3] Chin, R. M., Fu, X., Pai, M. Y., Vergnes, L., Hwang, H., Deng, G., Diep, S., Lomenick, B., Meli, V. S., Monsalve, G. C., Hu, E., Whelan, S. A., Wang, J. X., Jung, G., Solis, G. M., Fazlollahi, F., Kaweeteerawat, C., Quach, A., Nili, M., Krall, A. S., … Huang, J. (2014). The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature, 510(7505), 397–401. https:///10.1038/nature13264 [4] Asadi Shahmirzadi, A., Edgar, D., Liao, C. Y., Hsu, Y. M., Lucanic, M., Asadi Shahmirzadi, A., Wiley, C. D., Gan, G., Kim, D. E., Kasler, H. G., Kuehnemann, C., Kaplowitz, B., Bhaumik, D., Riley, R. R., Kennedy, B. K., & Lithgow, G. J. (2020). Alpha-Ketoglutarate, an Endogenous Metabolite, Extends Lifespan and Compresses Morbidity in Aging Mice. Cell metabolism, 32(3), 447–456.e6. https:///10.1016/j.cmet.2020.08.004 [5] Cynober, L., Coudray-Lucas, C., de Bandt, J. P., Guéchot, J., Aussel, C., Salvucci, M., & Giboudeau, J. (1990). Action of ornithine alpha-ketoglutarate, ornithine hydrochloride, and calcium alpha-ketoglutarate on plasma amino acid and hormonal patterns in healthy subjects. Journal of the American College of Nutrition, 9(1), 2–12. https:///10.1080/07315724.1990.10720343 [6] Chin, R. M., Fu, X., Pai, M. Y., Vergnes, L., Hwang, H., Deng, G., Diep, S., Lomenick, B., Meli, V. S., Monsalve, G. C., Hu, E., Whelan, S. A., Wang, J. X., Jung, G., Solis, G. M., Fazlollahi, F., Kaweeteerawat, C., Quach, A., Nili, M., Krall, A. S., … Huang, J. (2014). The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature, 510(7505), 397–401. https:///10.1038/nature13264 [7] Filip, R., & Pierzynowski, S. G. (2008). The absorption, tissue distribution and excretion of enteraly administered alpha-ketoglutarate in rats. Journal of animal physiology and animal nutrition, 92(2), 182–189. https:///10.1111/j.1439-0396.2007.00725.x [8] Salminen, A., & Kaarniranta, K. (2012). AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing research reviews, 11(2), 230–241. https:///10.1016/j.arr.2011.12.005 [9] Liu, S., He, L., & Yao, K. (2018). The Antioxidative Function of Alpha-Ketoglutarate and Its Applications. BioMed research international, 2018, 3408467. https:///10.1155/2018/3408467 [10] Zdzisińska, B., ?urek, A., & Kandefer-Szerszeń, M. (2017). Alpha-Ketoglutarate as a Molecule with Pleiotropic Activity: Well-Known and Novel Possibilities of Therapeutic Use. Archivum immunologiae et therapiae experimentalis, 65(1), 21–36. https:///10.1007/s00005-016-0406-x [11] Vaiserman, A. M., Lushchak, O. V., & Koliada, A. K. (2016). Anti-aging pharmacology: Promises and pitfalls. Ageing research reviews, 31, 9–35. https:///10.1016/j.arr.2016.08.004 [12] Bayliak, M. M., Shmihel, H. V., Lylyk, M. P., Storey, K. B., & Lushchak, V. I. (2016). Alpha-ketoglutarate reduces ethanol toxicity in Drosophila melanogaster by enhancing alcohol dehydrogenase activity and antioxidant capacity. Alcohol (Fayetteville, N.Y.), 55, 23–33. https:///10.1016/j.alcohol.2016.07.009 [13] Krau?, D., & Gottlieb, E. (2020). Restraining colorectal cancer with αKG. Nature cancer, 1(3), 267–269. https:///10.1038/s43018-020-0044-4 [14] Wu, N., Yang, M., Gaur, U., Xu, H., Yao, Y., & Li, D. (2016). Alpha-Ketoglutarate: Physiological Functions and Applications. Biomolecules & therapeutics, 24(1), 1–8. https:///10.4062/biomolther.2015.078 [15] Demidenko, O., Barardo, D., Budovskii, V., Finnemore, R., Palmer, F. R., Kennedy, B. K., & Budovskaya, Y. V. (2021). Rejuvant?, a potential life-extending compound formulation with alpha-ketoglutarate and vitamins, conferred an average 8 year reduction in biological aging, after an average of 7 months of use, in the TruAge DNA methylation test. Aging, 13(22), 24485–24499. https:///10.18632/aging.203736 [16] Salminen, A., Kaarniranta, K., Hiltunen, M., & Kauppinen, A. (2014). Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process. Cellular signalling, 26(7), 1598–1603. https:///10.1016/j.cellsig.2014.03.030 [17] Yang, F., Zhou, Z., Guo, M., & Zhou, Z. (2022). The study of skin hydration, anti-wrinkles function improvement of anti-aging cream with alpha-ketoglutarate. Journal of cosmetic dermatology, 21(4), 1736–1743. https:///10.1111/jocd.14635 [18] Fucheng Dong, Wei Li. (2022). α-Ketoglutaric acid: a new chance for male fertility preservation, Life Metabolism, loac015. https:///10.1093/lifemeta/loac015 [19] Wu, N., Yang, M., Gaur, U., Xu, H., Yao, Y., & Li, D. (2016). Alpha-Ketoglutarate: Physiological Functions and Applications. Biomolecules & therapeutics, 24(1), 1–8. https:///10.4062/biomolther.2015.078 [20] Cynober, L., Coudray-Lucas, C., de Bandt, J. P., Guéchot, J., Aussel, C., Salvucci, M., & Giboudeau, J. (1990). Action of ornithine alpha-ketoglutarate, ornithine hydrochloride, and calcium alpha-ketoglutarate on plasma amino acid and hormonal patterns in healthy subjects. Journal of the American College of Nutrition, 9(1), 2–12. https:///10.1080/07315724.1990.10720343 [21] Filip, R. S., Pierzynowski, S. G., Lindegard, B., Wernerman, J., Haratym-Maj, A., & Podgurniak, M. (2007). Alpha-ketoglutarate decreases serum levels of C-terminal cross-linking telopeptide of type I collagen (CTX) in postmenopausal women with osteopenia: six-month study. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition, 77(2), 89–97. https:///10.1024/0300-9831.77.2.89 [22] Miedema, H., Felle, H., & Prins, H. B. (1992). Effect of high pH on the plasma membrane potential and conductance in Elodea densa. The Journal of membrane biology, 128(1), 63–69. https:///10.1007/BF00231871 [23] Karsegard, V. L., Raguso, C. A., Genton, L., Hirschel, B., & Pichard, C. (2004). L-ornithine alpha-ketoglutarate in HIV infection: effects on muscle, gastrointestinal, and immune functions. Nutrition (Burbank, Los Angeles County, Calif.), 20(6), 515–520. https:///10.1016/j.nut.2004.03.011 |
|
來(lái)自: 金蘋(píng)果6 > 《藥》