結(jié)核病(TB)是由結(jié)核分枝桿菌(Mycobacterium tuberculosis,,Mtb)通過空氣傳播引起的慢性傳染病,是導(dǎo)致人類死亡最多的傳染病之一[1],。近年來(lái)由于耐藥Mtb的流行及Mtb與人類免疫缺陷病毒(HIV)共感染,,增加了TB治療的難度。另外,,人群對(duì)Mtb的感染,、發(fā)病和治療具有異質(zhì)性;接觸Mtb的人群中,,結(jié)核菌素皮膚實(shí)驗(yàn)(TST)和γ干擾素釋放實(shí)驗(yàn)(IGRA)檢測(cè)說(shuō)明部分人群對(duì)Mtb具有天然抵抗性,,不建立感染[2];建立感染人群中,,90%~95%發(fā)展為無(wú)臨床癥狀的潛伏結(jié)核感染,,發(fā)展為活動(dòng)性結(jié)核率為5%~10%,;活動(dòng)性TB的治療主要是化學(xué)藥物聯(lián)合治療,敏感肺結(jié)核患者的治療方案通常為2HRZ(E)/4HR(H:異煙肼,,R:利福平,,E:乙胺丁醇,Z:吡嗪酰胺),,6個(gè)月左右的標(biāo)準(zhǔn)治療,治愈率約為95%,,短療程治療,,治愈率均為60%~70%[3,4,5]。 結(jié)核感染,、發(fā)病和治療的異質(zhì)性除了個(gè)體遺傳背景的差異,,棲息宿主的微生物菌群也可能起作用。微生物菌群可在整個(gè)身體部位發(fā)揮作用(如通過腸-肺,、腸-腦軸),,并調(diào)節(jié)從癌癥、肥胖到神經(jīng)系統(tǒng)疾病的各種疾病[6,7],。目前,,腸道微生物菌群研究是科學(xué)研究的前沿和熱點(diǎn)[8]。越來(lái)越多的研究顯示,,腸道微生物菌群參與人類健康和疾病,,Web of Science數(shù)據(jù)庫(kù)中有100 000多篇相關(guān)文獻(xiàn),而相對(duì)結(jié)核與微生物群的關(guān)系搜索到800多篇文獻(xiàn),,而關(guān)于兒童結(jié)核與微生物菌群關(guān)系只搜索到70多篇,,可以說(shuō)此領(lǐng)域研究處于初步探索階段。這些發(fā)表的文獻(xiàn)表明,,微生物菌群對(duì)于TB的整個(gè)進(jìn)程很重要,。本綜述介紹了宿主免疫力、微生物菌群和結(jié)核菌之間相互作用的研究進(jìn)展,,并概述在TB特別是兒童TB的診斷,、治療上的研究挑戰(zhàn)和應(yīng)用前景。 1 微生物菌群影響Mtb感染進(jìn)程的機(jī)制 人體是微生物菌群的棲息地,,在人體不同的位置存在不同的微生物種群,,這些與宿主共生的微生物菌群,通過多種分子機(jī)制誘導(dǎo)定植抗力而影響宿主的生理,,提供對(duì)傳染病的抵抗力[9],,這些過程涉及共生微生物、病原菌和宿主之間的相互作用,,表現(xiàn)為微生物的種類和豐度,,宿主免疫系統(tǒng)的刺激,。另外,在微生物菌群中微生境中的營(yíng)養(yǎng)有限,,新陳代謝物的改變會(huì)導(dǎo)致體內(nèi)生態(tài)系統(tǒng)的穩(wěn)定性,,容易使宿主受病原菌的感染。作者將從這3個(gè)方向總結(jié)微生物菌群影響Mtb感染的進(jìn)程,。 1.1 Mtb感染的建立 之前認(rèn)為健康者的肺部是無(wú)菌的,,但最近的高通量測(cè)序研究結(jié)果顯示肺部也存在微生物菌群[10]。肺微生物菌群隨肺區(qū)域的不同而變化,,同時(shí)還與免疫狀態(tài)有關(guān),。Mtb通過氣溶膠感染[11],部分接觸者能夠在細(xì)菌建立潛伏感染之前清除進(jìn)入體內(nèi)的細(xì)菌,,但是相關(guān)的機(jī)制尚不清楚,。一種猜測(cè)是這類人群的微生物菌群具有特異性,可通過先天免疫反應(yīng)清除初始感染,。對(duì)于這個(gè)假說(shuō)的間接證據(jù)是通過野生小鼠和無(wú)菌小鼠的轉(zhuǎn)錄組比較,,發(fā)現(xiàn)先天淋巴樣細(xì)胞的轉(zhuǎn)錄譜[12]、髓樣細(xì)胞的發(fā)育和功能[13,14,15]及黏液層形成[16]存在差異,。另外,,Mtb建立感染后,會(huì)產(chǎn)生較強(qiáng)的免疫反應(yīng),,這種狀態(tài)伴隨著Mtb特異性T淋巴細(xì)胞反應(yīng)的建立,,可以通過TST/IGRA檢測(cè)。不同人群有不同的檢測(cè)結(jié)果,,差別可能是由于不同人群微生物菌群產(chǎn)生不同代謝產(chǎn)物,,代謝產(chǎn)物對(duì)宿主免疫系統(tǒng)有重要條件作用[17,18]。今后,,通過比較活動(dòng)性TB患者與同等暴露的IGRA+和IGRA-家庭接觸者的微生物菌群組分和分度及代謝產(chǎn)物,,發(fā)現(xiàn)與宿主免疫反應(yīng)的關(guān)聯(lián),將為疫苗設(shè)計(jì),、菌劑的開發(fā)提供科學(xué)指導(dǎo),。 1.2 TB的發(fā)展進(jìn)程 如上所述,微生物菌群通過調(diào)控宿主的營(yíng)養(yǎng),、代謝和免疫狀況影響TB的進(jìn)程,。一項(xiàng)研究顯示,在人類中,,腸道幽門螺桿菌(HP)感染改變了Mtb感染的敏感性及活動(dòng)性TB的發(fā)展[19],。在動(dòng)物模型中,與未感染HP的小鼠相比,感染HP的小鼠氣溶膠感染Mtb表現(xiàn)為肺部炎癥(CD4和CD8 T淋巴細(xì)胞激活)和嚴(yán)重的肺組織病變[20,21],。腸道HP共感染改變了對(duì)Mtb感染的敏感性及活動(dòng)性肺結(jié)核的發(fā)展,,這種遠(yuǎn)端影響可能與微生物菌群中分泌的新陳代謝物有關(guān)。如,,肺部金黃色葡萄球菌和百日咳桿菌導(dǎo)致宿主體內(nèi)葡萄糖代謝失調(diào)[22,23,24],,糖代謝在Mtb感染的宿主免疫應(yīng)答中起重要作用——Mtb感染建立后,進(jìn)入肺部的巨噬細(xì)胞,、感染的細(xì)胞從氧化磷酸化轉(zhuǎn)變?yōu)橛醒跆墙徒?,抑制白?xì)胞介素(IL)-1β的產(chǎn)生同時(shí)促進(jìn)IL-10合成,這條途徑的改變促進(jìn)了感染細(xì)胞內(nèi)Mtb的生長(zhǎng)[25],。與臨床觀察相印證的是高血糖的糖尿病患者患TB的風(fēng)險(xiǎn)高[26,27],。Mtb感染小鼠實(shí)驗(yàn)中可以觀察到宿主糖代謝的改變以響應(yīng)Mtb感染,如葡萄糖轉(zhuǎn)運(yùn)蛋白Glut1上調(diào)[28],;糖酵解抑制CD8+ T淋巴細(xì)胞效應(yīng)[29]。葡萄糖的攝取對(duì)于B淋巴細(xì)胞增殖和抗體的產(chǎn)生也是必需的[30,31],。最近的一項(xiàng)針對(duì)感染HIV的南非人中肺部菌群的調(diào)查研究發(fā)現(xiàn),,由潛伏感染到活動(dòng)性TB的轉(zhuǎn)化過程與微生物菌群存在關(guān)聯(lián)[32],這些患者中肺部厭氧菌數(shù)量增加,,其中有普氏菌,,其能產(chǎn)生丙酸和丁酸等短鏈脂肪酸,這些代謝物抑制Mtb的免疫反應(yīng),,從而增加Mtb的易感性,;丙酸和丁酸還可誘導(dǎo)上皮細(xì)胞產(chǎn)生IL-18,調(diào)節(jié)B淋巴細(xì)胞向漿細(xì)胞分化,、抗體產(chǎn)生和IgA類轉(zhuǎn)換[33],。丁酸鹽抑制分枝桿菌抗原特異性IFN-γ和IL-17反應(yīng),導(dǎo)致肺部分枝桿菌抗原特異性FOXP3+調(diào)節(jié)性T淋巴細(xì)胞增加[32,33],。綜上所述,,肺部微生物菌群的波動(dòng)導(dǎo)致厭氧菌水平升高、短鏈脂肪酸增加,,進(jìn)而免疫效應(yīng)功能受到抑制,,增加TB進(jìn)程。另外,,一項(xiàng)小鼠動(dòng)物實(shí)驗(yàn)中發(fā)現(xiàn),,梭狀芽孢桿菌產(chǎn)生的吲哚-3-丙酸(IPA)[34]在體外和肺外部位均表現(xiàn)出抗結(jié)核活性[35]。Negatu等[35]研究認(rèn)為,,腸道菌群產(chǎn)生的芳香族氨基酸的類似物IPA抑制色氨酸的合成,,從而抑制Mtb的生長(zhǎng)。另外,微生物菌群產(chǎn)生的代謝物影響免疫遞呈,,Mtb的脂類和糖化的脂類抗原利用CD1遞呈刺激T淋巴細(xì)胞應(yīng)答[36],。綜上所述,微生物菌群產(chǎn)生的代謝物,,如葡萄糖,、短鏈脂肪酸和芳香族氨基酸的類似物IPA直接影響Mtb的生長(zhǎng)或影響感染宿主的免疫調(diào)控,進(jìn)而間接影響TB活動(dòng)發(fā)展,,但具體分子機(jī)制尚待進(jìn)一步闡釋,。 1.3 抗生素治療的影響 抗生素是引起微生物群擾動(dòng)的主要原因,因?yàn)榭股厥怯脕?lái)特異性和/或廣泛殺死細(xì)菌的化合物[37],。TB的治療是化學(xué)治療,,根據(jù)世界衛(wèi)生組織的指導(dǎo)方針,藥物敏感性TB的治療是每天多次口服抗生素至少6個(gè)月[38],,這是全球使用時(shí)間最長(zhǎng)的抗生素治療方案之一,。在TB治療中使用的4種一線抗生素中,R對(duì)革蘭陽(yáng)性和革蘭陰性細(xì)菌具有廣譜活性,。H,、E和Z則專門針對(duì)Mtb,其中的H和Z需要被Mtb特異性酶激活后,,方可抑制或殺死Mtb[39,40,41],。TB化療與微生物菌群的基本問題包括TB化療是否會(huì)導(dǎo)致宿主微生物菌群的破壞和患者產(chǎn)生不良反應(yīng),TB治療療效與微生物菌群組成的相關(guān)性,。 目前,,TB化療對(duì)微生物菌群影響的研究很少。一項(xiàng)HRZE治療對(duì)小鼠腸道菌群的影響顯示,,H,、R和Z多聯(lián)療法治療1 d后,細(xì)菌的多樣性降低,,預(yù)示微生物菌群結(jié)構(gòu)受到了干擾,,2周后菌群結(jié)構(gòu)達(dá)到平衡,這種狀態(tài)維持達(dá)3個(gè)月[42],。當(dāng)給予單一藥物療法時(shí)(單獨(dú)使用H,、R或Z),只有R能使多樣性降低[43],,這可能是由于R是廣譜抗生素,,其他2個(gè)是Mtb特異性的抗生素。治愈TB所需要的長(zhǎng)期化療對(duì)微生物菌群有長(zhǎng)期不利影響,,可達(dá)14個(gè)月[44],。在抗生素戒斷后,,未發(fā)現(xiàn)α多樣性(不同細(xì)菌的數(shù)量或相對(duì)豐度的均勻性)的變化,但是乳桿菌減少,、擬桿菌和變形桿菌增加,,這些改變的種群屬于宿主免疫調(diào)節(jié)劑,其分泌的代謝物調(diào)節(jié)免疫反應(yīng),。例如,,擬桿菌產(chǎn)生的多糖通過上調(diào)調(diào)節(jié)性T淋巴細(xì)胞(Tregs)介導(dǎo)黏膜耐受[45]。乳桿菌通過直接結(jié)合模式識(shí)別受體調(diào)節(jié)先天和適應(yīng)性免疫應(yīng)答[46],,而普氏菌增強(qiáng)了Th17相關(guān)細(xì)胞介導(dǎo)的炎癥[47],。TB治療可能會(huì)不同程度地消耗人類微生物群中'2型'T淋巴細(xì)胞抗原決定簇,它們與微生物菌群中的細(xì)菌序列有更高的同源性,,有TB史的患者識(shí)別率低于無(wú)TB史的患者,,這種T淋巴細(xì)胞識(shí)別的損失,可以解釋有TB史的患者復(fù)發(fā)率高[48],??傊股氐氖褂脮?huì)影響腸道菌群的數(shù)量和豐度,,這種影響對(duì)患者是長(zhǎng)期的,,不同藥物治療的效果也會(huì)不同。 2 微生物菌群與兒童 每年有數(shù)百萬(wàn)的兒童接觸到Mtb,,與成年人相似,多數(shù)接觸兒童可以清除或限制Mtb的發(fā)展,,小部分的兒童感染后發(fā)展為活動(dòng)性TB,。每年有100萬(wàn)兒童患TB,其中1/4的兒童死亡[49],。雖然兒童的免疫系統(tǒng)還未發(fā)展完善,,Mtb感染發(fā)展為TB的風(fēng)險(xiǎn)增加,但如何從Mtb感染發(fā)展到活動(dòng)性TB的理解有限,。對(duì)兒童來(lái)說(shuō),,免疫控制的破壞是由于另一種病原體的感染。但共同感染對(duì)TB風(fēng)險(xiǎn)影響所知還是很少,。病毒,、細(xì)菌、真菌和原生動(dòng)物的感染會(huì)影響到宿主的Th1,、Th2和Tregs的反應(yīng),,從而影響對(duì)TB的保護(hù)和傳播有關(guān)[50]。與成年人的不同之處,,對(duì)于兒童結(jié)核年齡也是一個(gè)重要的因素,,這可能是宿主對(duì)Mtb免疫反應(yīng)有年齡差異[51,52]。與少年和成人相比,幼兒的抗原呈遞細(xì)胞少,,吞噬作用和募集能力低,,導(dǎo)致不良的T淋巴細(xì)胞啟動(dòng),導(dǎo)致Mtb的免疫力低,。另外,,腸道微生物菌群結(jié)構(gòu)隨年齡而變化[53]。出生不久的新生兒腸道以腸桿菌科為主,,很快雙歧桿菌成為優(yōu)勢(shì)菌群,,直到斷奶吃固體食物之后,轉(zhuǎn)換為成年模式,,擬桿菌,、片球菌、梭狀桿菌和韋榮球菌成為優(yōu)勢(shì)菌群[54],。引起腸道感染的微生物和感染頻率也發(fā)生了變化[55],。嬰兒最常感染輪狀病毒、隱孢子蟲,、大腸桿菌,、痢疾桿菌和腺病毒。12~23個(gè)月的兒童感染較少,,但病原體相似,。與成人不同,嬰兒還接種了一些常規(guī)的活疫苗和滅活疫苗,,這些疫苗對(duì)Mtb的易感性具有免疫調(diào)節(jié)作用,。如,卡介苗和麻疹I(lǐng)gG對(duì)QuantiFERON陽(yáng)性有保護(hù)作用,,提示卡介苗和麻疹疫苗接種可能對(duì)Mtb感染提供異源性保護(hù)[56],。在研究肺炎球菌與TB的關(guān)系中,一項(xiàng)關(guān)于9價(jià)多糖肺炎球菌疫苗的臨床試驗(yàn)中,,與接受安慰劑的兒童相比,,TB住院治療的可能性降低[57]。 目前,,結(jié)核藥物治療對(duì)兒童(包括嬰兒)微生物菌群的影響尚不明確,,因此有必要對(duì)該領(lǐng)域進(jìn)行研究。更好地了解合并感染與TB之間的關(guān)系,,可通過微生物菌群,、免疫調(diào)節(jié)或疫苗的早期治療,使臨床醫(yī)師在TB發(fā)病的每個(gè)階段改善對(duì)兒童的護(hù)理,。 3 結(jié)論 綜上所述,,微生物菌群與Mtb關(guān)系的研究處于初期,,研究證實(shí)微生物菌群影響了感染和發(fā)病的各個(gè)步驟,解開兩者相關(guān)性和因果關(guān)系具有巨大的挑戰(zhàn)性,,需要進(jìn)一步深入,、系統(tǒng)的研究,并在動(dòng)物模型或體外模型中進(jìn)行證實(shí),,發(fā)現(xiàn)微生物菌群對(duì)TB發(fā)展的調(diào)控機(jī)制,,篩選微生物菌群為核心的生物標(biāo)記以預(yù)測(cè)TB特別是兒童TB,將為診斷和治療TB提供科學(xué)理論基礎(chǔ),。 利益沖突 利益沖突 所有作者均聲明不存在利益沖突 參考文獻(xiàn) [1] BourzacK.Infectious disease:beating the big three[J].Nature,,2014,507(7490):S4-7.DOI:10.1038/507S4a. [2] CobatA, GallantCJ, SimkinL,,et al.Two loci control tuberculin skin test reactivity in an area hyperendemic for tuberculosis[J].J Exp Med,,2009,206(12):2583-2591.DOI:10.1084/jem.20090892. [3] Sputum-smear-negative pulmonary tuberculosis:controlled trial of 3-month and 2-month regimens of chemotherapy[J].Lancet,,1979,,1(8131):1361-1363. [4] Controlled clinical trial of five short-course(4-month) chemotherapy regimens in pulmonary tuberculosis.Second report of the 4th study.East African/British Medical Research Councils Study[J].Am Rev Respir Dis,1981,,123(2):165-170.DOI:10.1164/arrd.1981.123.2.165. [5] GillespieSH, CrookAM, McHughTD,,et al.Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis[J].N Engl J Med,2014,,371(17):1577-1587.DOI:10.1056/NEJMoa1407426. [6] ChoI, BlaserMJ.Applications of next-generation sequencing the human microbiome:at the interface of health and disease[J].Nat Rev Genet,,2012,13(4):260-270.DOI:10.1038/nrg3182. [7] ZitvogelL, MaY, RaoultD,,et al.The microbiome in cancer immunotherapy:diagnostic tools and therapeutic strategies[J].Science,,2018,359(6382):1366-1370.DOI:10.1126/science.aar6918. [8] LiD, GaoC, ZhangF,,et al.Seven facts and five initiatives for gut microbiome research[J].Protein Cell,2020,,[Epub ahead of print].DOI:10.1007/s13238-020-00697-8. [9] KimS, CovingtonA, PamerEG.The intestinal microbiota:antibiotics,,colonization resistance,and enteric pathogens[J].Immunol Rev,,2017,,279(1):90-105.DOI:10.1111/imr.12563. [10] MoffattMF, CooksonWO.The lung microbiome in health and disease[J].Clin Med(Lond),2017,,17(6):525-529.DOI:10.7861/clinmedicine.17-6-525. [11] FlynnJL, ChanJ.Immunology of tuberculosis[J].Annu Rev Immunol,,2001,19:93-129.DOI:10.1146/annurev.immunol.19.1.93. [12] Gury-BenAriM, ThaissCA, SerafiniN,,et al.The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome[J].Cell,,2016,,166(5):1231-1246.DOI:10.1016/j.cell.2016.07.043. [13] KhosraviA, YanezA, PriceJG,et al.Gut microbiota promote hematopoiesis to control bacterial infection[J].Cell Host Microbe,,2014,,15(3):374-381.DOI:10.1016/j.chom.2014.02.006. [14] ClarkeTB, DavisKM, LysenkoES,et al.Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity[J].Nat Med,,2010,,16(2):228-231.DOI:10.1038/nm.2087. [15] GraingerJR, WohlfertEA, FussIJ,et al.Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection[J].Nat Med,,2013,,19(6):713-721.DOI:10.1038/nm.3189. [16] JohanssonME, JakobssonHE, Holmen-LarssonJ,et al.Normalization of host intestinal mucus layers requires long-term microbial colonization[J].Cell Host Microbe,,2015,,18(5):582-592.DOI:10.1016/j.chom.2015.10.007. [17] UbedaC, DjukovicA, IsaacS.Roles of the intestinal microbiota in pathogen protection[J].Clin Transl Immunology,2017,,6(2):e128.DOI:10.1038/cti.2017.2. [18] ThaissCA, ZmoraN, LevyM,,et al.The microbiome and innate immunity[J].Nature,2016,,535(7610):65-74.DOI:10.1038/nature18847. [19] SchlugerNW, RomWN.The host immune response to tuberculosis[J].Am J Respir Crit Care Med,,1998,157(3Pt 1):679-691.DOI:10.1164/ajrccm.157.3.9708002. [20] ArnoldIC, HutchingsC, KondovaI,,et al.Helicobacter hepaticus infection in BALB/c mice abolishes subunit-vaccine-induced protection against M.tuberculosis[J].Vaccine,,2015,33(15):1808-1814.DOI:10.1016/j.vaccine.2015.02.041. [21] MajlessiL, SayesF, BureauJF,,et al.Colonization with Helicobacter is concomitant to modified gut microbiota and drastic failure of the immune control of Mycobacterium tuberculosis[J].Mucosal Immunol,,2017,10(5):1178-1189.DOI:10.1038/mi.2016.140. [22] VitkoNP, SpahichNA, RichardsonAR.Glycolytic dependency of high-level nitric oxide resistance and virulence in Staphylococcus aureus[J].mBio,,2015,,6(2):e00045-15.DOI:10.1128/mBio.00045-15. [23] BischoffM, WonnenbergB, NippeN,et al.CcpA affects infectivity of staphylococcus aureus in a hyperglycemic environment[J].Front Cell Infect Microbiol,,2017,,7:172.DOI:10.3389/fcimb.2017.00172. [24] FreybergZ, HarvillET.Pathogen manipulation of host metabolism:a common strategy for immune evasion[J].PLoS Pathog,2017,,13(12):e1006669.DOI:10.1371/journal.ppat.1006669. [25] GleesonLE, SheedyFJ, Palsson-McDermottEM,,et al.Cutting edge:mycobacterium tuberculosis induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication[J].J Immunol,2016,,196(6):2444-2449.DOI:10.4049/jimmunol.1501612. [26] RizaAL, PearsonF, Ugarte-GilC,,et al.Clinical management of concurrent diabetes and tuberculosis and the implications for patient ser-vices[J].Lancet Diabetes Endocrinol,2014,,2(9):740-753.DOI:10.1016/S2213-8587(14)70110-X. [27] DooleyKE, ChaissonRE.Tuberculosis and diabetes mellitus:convergence of two epidemics[J].Lancet Infect Dis,,2009,,9(12):737-746.DOI:10.1016/S1473-3099(09)70282-8. [28] ShiL, EugeninEA, SubbianS.Immunometabolism in tuberculosis[J].Front Immunol,2016,,7:150.DOI:10.3389/fimmu.2016.00150. [29] SukumarM, LiuJ, JiY,,et al.Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function[J].J Clin Invest,2013,,123(10):4479-4488.DOI:10.1172/JCI69589. [30] DoughtyCA, BleimanBF, WagnerDJ,,et al.Antigen receptor-mediated changes in glucose metabolism in B lymphocytes:role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth[J].Blood,2006,,107(11):4458-4465.DOI:10.1182/blood-2005-12-4788. [31] Caro-MaldonadoA, WangR, NicholsAG,,et al.Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells[J].J Immunol,2014,,192(8):3626-3636.DOI:10.4049/jimmunol.1302062. [32] SegalLN, ClementeJC, LiY,,et al.Anaerobic bacterial fermentation products increase tuberculosis risk in antiretroviral-drug-treated HIV patients[J].Cell Host Microbe,2017,,21(4):530-537.DOI:10.1016/j.chom.2017.03.003. [33] ShibataN, KunisawaJ, KiyonoH.Dietary and microbial metabolites in the regulation of host immunity[J].Front Microbiol,,2017,8:2171.DOI:10.3389/fmicb.2017.02171. [34] DoddD, SpitzerMH, van TreurenW,,et al.A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites[J].Nature,,2017,551(7682):648-652.DOI:10.1038/nature24661. [35] NegatuDA, LiuJJJ, ZimmermanM,,et al.Whole-cell screen of fragment library identifies gut microbiota metabolite indole propionic acid as antitubercular[J].Antimicrob Agents Chemother,,2018,62(3).DOI:10.1128/AAC.01571-17. [36] UlrichsT, MoodyDB, GrantE,,et al.T-cell responses to CD1-presented lipid antigens in humans with Mycobacterium tuberculosis infection[J].Infect Immun,,2003,71(6):3076-3087.DOI:10.1128/iai.71.6.3076-3087.2003. [37] LangdonA, CrookN, DantasG.The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation[J].Genome Med,,2016,,8(1):39.DOI:10.1186/s13073-016-0294-z. [38] WHO.Treatment of tuberculosis:guidelines[M].4th ed.Geneva:Swit-zerland,2010. [39] [40] [41] HawnTR, MathesonAI, MaleySN,,et al.Host-directed therapeutics for tuberculosis:can we harness the host,?[J].Microbiol Mol Biol Rev,,2013,77(4):608-627.DOI:10.1128/MMBR.00032-13. [42] NamasivayamS, MaigaM, YuanW,,et al.Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy[J].Microbiome,,2017,,5(1):71.DOI:10.1186/s40168-017-0286-2. [43] MaierL, PruteanuM, KuhnM,et al.Extensive impact of non-antibiotic drugs on human gut bacteria[J].Nature,,2018,,555(7698):623-628.DOI:10.1038/nature25979. [44] WippermanMF, FitzgeraldDW, JusteMAJ,et al.Antibiotic treatment for Tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed[J].Sci Rep,,2017,,7(1):10767.DOI:10.1038/s41598-017-10346-6. [45] ShenY, Giardino TorchiaML, LawsonGW,et al.Outer membrane vesicles of a human commensal mediate immune regulation and disease protection[J].Cell Host Microbe,,2012,,12(4):509-520.DOI:10.1016/j.chom.2012.08.004. [46] WellsJM.Immunomodulatory mechanisms of lactobacilli[J].Microb Cell Fact,2011,,10(Suppl 1):S17.DOI:10.1186/1475-2859-10-S1-S17. [47] LarsenJM.The immune response to Prevotella bacteria in chronic inflammatory disease[J].Immunology,,2017,151(4):363-374.DOI:10.1111/imm.12760. [48] ScribaTJ, CarpenterC, ProSC,,et al.Differential recognition of Mycobacterium tuberculosis-specific epitopes as a function of tuberculosis disease history[J].Am J Resp Crit Care,,2017,196(6):772-781.DOI:10.1164/rccm.201706-1208OC. [49] DoddPJ, GardinerE, CoghlanR,,et al.Burden of childhood tuberculosis in 22 high-burden countries:a mathematical modelling study[J].Lancet Glob Health,,2014,2(8):e453-459.DOI:10.1016/S2214-109X(14)70245-1. [50] WhittakerE, Lopez-VarelaE, BroderickC,,et al.Examining the complex relationship between tuberculosis and other infectious diseases in children[J].Front Pediatr,,2019,7:233.DOI:10.3389/fped.2019.00233. [51] Basu RoyR, WhittakerE, KampmannB.Current understanding of the immune response to tuberculosis in children[J].Curr Opin Infect Dis,,2012,,25(3):250-257.DOI:10.1097/QCO.0b013e3283529af9. [52] JonesC, WhittakerE, BamfordA,et al.Immunology and pathogenesis of childhood TB[J].Paediatr Respir Rev,,2011,,12(1):3-8.DOI:10.1016/j.prrv.2010.09.006. [53] YassourM, VatanenT, SiljanderH,et al.Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability[J].Sci Transl Med,,2016,,8(343):343-381.DOI:10.1126/scitranslmed.aad0917. [54] LinPL, FlynnJL.Understanding latent tuberculosis:a moving target[J].J Immunol,2010,,185(1):15-22.DOI:10.4049/jimmunol.0903856. [55] KollingG, WuM, GuerrantRL.Enteric pathogens through life stages[J].Front Cell Infect Microbiol,,2012,2:114.DOI:10.3389/fcimb.2012.00114. [56] MellmanWJ, WettonR.Depression of the tuberculin reaction by atte-nuated measles virus vaccine[J].J Lab Clin Med,,1963,,61:453-458. [57] MooreDP, KlugmanKP, MadhiSA.Role of Streptococcus pneumoniae in hospitalization for acute community-acquired pneumonia associated with culture-confirmed Mycobacterium tuberculosis in children:a pneumococcal conjugate vaccine probe study[J].Pediatr Infect Dis J,2010,,29(12):1099-1104.DOI:10.1097/INF.0b013e3181eaefff. |
|
來(lái)自: 昵稱zo275 > 《醫(yī)學(xué)資料》