速算技巧A,、乘法速算 一,、十位數(shù)是1的兩位數(shù)相乘 乘數(shù)的個(gè)位與被乘數(shù)相加,得數(shù)為前積,,乘數(shù)的個(gè)位與被乘數(shù)的個(gè)位相乘,,得數(shù)為后積,滿十前一,。 例:15×17 15 + 7 = 22 5 × 7 = 35 --------------- 255 即15×17 = 255 解釋: 15×17 =15 ×(10 + 7) =15 × 10 + 15 × 7 =150 + (10 + 5)× 7 =150 + 70 + 5 × 7 =(150 + 70)+(5 × 7) 為了提高速度,,熟練以后可以直接用“15 + 7”,而不用“150 + 70”,。 例:17 × 19 17 + 9 = 26 7 × 9 = 63 連在一起就是255,,即260 + 63 = 323
二、個(gè)位是1的兩位數(shù)相乘 方法:十位與十位相乘,,得數(shù)為前積,,十位與十位相加,得數(shù)接著寫,,滿十進(jìn)一,,在最后添上1。 例:51 × 31 50 × 30 = 1500 50 + 30 = 80 ------------------ 1580 因?yàn)? × 1 = 1 ,,所以后一位一定是1,,在得數(shù)的后面添上1,即1581,。數(shù)字“0”在不熟練的時(shí)候作為助記符,,熟練后就可以不使用了。 例:81 × 91 80 × 90 = 7200 80 + 90 = 170 ------------------ 7370 1 ------------------ 7371 原理大家自己理解就可以了,。
三,、十位相同個(gè)位不同的兩位數(shù)相乘 被乘數(shù)加上乘數(shù)個(gè)位,和與十位數(shù)整數(shù)相乘,,積作為前積,,個(gè)位數(shù)與個(gè)位數(shù)相乘作為后積加上去。 例:43 × 46 (43 + 6)× 40 = 1960 3 × 6 = 18 ---------------------- 1978 例:89 × 87 (89 + 7)× 80 = 7680 9 × 7 = 63 ---------------------- 7743
四,、首位相同,,兩尾數(shù)和等于10的兩位數(shù)相乘 十位數(shù)加1,得出的和與十位數(shù)相乘,得數(shù)為前積,,個(gè)位數(shù)相乘,,得數(shù)為后積,沒(méi)有十位用0補(bǔ),。 例:56 × 54 (5 + 1) × 5 = 30-- 6 × 4 = 24 ---------------------- 3024 例: 73 × 77 (7 + 1) × 7 = 56-- 3 × 7 = 21 ---------------------- 5621 例: 21 × 29 (2 + 1) × 2 = 6-- 1 × 9 = 9 ---------------------- 609 “--”代表十位和個(gè)位,,因?yàn)閮晌粩?shù)的首位相乘得數(shù)的后面是兩個(gè)零,請(qǐng)大家明白,,不要忘了,,這點(diǎn)是很容易被忽略的。
五,、首位相同,尾數(shù)和不等于10的兩位數(shù)相乘 兩首位相乘(即求首位的平方),,得數(shù)作為前積,,兩尾數(shù)的和與首位相乘,得數(shù)作為中積,,滿十進(jìn)一,,兩尾數(shù)相乘,得數(shù)作為后積,。 例:56 × 58 5 × 5 = 25-- (6 + 8 )× 5 = 7-- 6 × 8 = 48 ---------------------- 3248 得數(shù)的排序是右對(duì)齊,,即向個(gè)位對(duì)齊。這個(gè)原則很重要,。
六,、被乘數(shù)首尾相同,乘數(shù)首尾和是10的兩位數(shù)相乘,。 乘數(shù)首位加1,,得出的和與被乘數(shù)首位相乘,得數(shù)為前積,,兩尾數(shù)相乘,,得數(shù)為后積,沒(méi)有十位用0補(bǔ),。 例: 66 × 37 (3 + 1)× 6 = 24-- 6 × 7 = 42 ---------------------- 2442 例: 99 × 19 (1 + 1)× 9 = 18-- 9 × 9 = 81 ---------------------- 1881
七,、被乘數(shù)首尾和是10,乘數(shù)首尾相同的兩位數(shù)相乘 與幫助6的方法相似,。兩首位相乘的積加上乘數(shù)的個(gè)位數(shù),,得數(shù)作為前積,兩尾數(shù)相乘,,得數(shù)作為后積,,沒(méi)有十位補(bǔ)0。 例:46 × 99 4 × 9 + 9 = 45-- 6 × 9 = 54 ------------------- 4554 例:82 × 33 8 × 3 + 3 = 27-- 2 × 3 = 6 ------------------- 2706
八、兩首位和是10,,兩尾數(shù)相同的兩位數(shù)相乘,。 兩首位相乘,積加上一個(gè)尾數(shù),,得數(shù)作為前積,,兩尾數(shù)相乘(即尾數(shù)的平方),得數(shù)作為后積,,沒(méi)有十位補(bǔ)0,。 例:78 × 38 7 × 3 + 8 = 29-- 8 × 8 = 64 ------------------- 2964 例:23 × 83 2 × 8 + 3 = 19-- 3 × 3 = 9 -------------------- 1909
B、平方速算 一,、求11~19 的平方 底數(shù)的個(gè)位與底數(shù)相加,,得數(shù)為前積,底數(shù)的個(gè)位乘以個(gè)位相乘,,得數(shù)為后積,,滿十前一。 例:17 × 17 17 + 7 = 24- 7 × 7 = 49 --------------- 289 參閱乘法速算中的“十位是1 的兩位相乘”
二,、個(gè)位是1 的兩位數(shù)的平方 底數(shù)的十位乘以十位(即十位的平方),,得為前積,底數(shù)的十位加十位(即十位乘以2),,得數(shù)為后積,,在個(gè)位加1。 例:71 × 71 7 × 7 = 49-- 7 × 2 = 14- 1 ----------------- 5041 參閱乘法速算中的“個(gè)位數(shù)是1的兩位數(shù)相乘”
三,、個(gè)位是5 的兩位數(shù)的平方 十位加1 乘以十位,,在得數(shù)的后面接上25。 例:35 × 35 (3 + 1)× 3 = 12-- 25 ---------------------- 1225
四,、21~50 的兩位數(shù)的平方 在這個(gè)范圍內(nèi)有四個(gè)數(shù)字是個(gè)關(guān)鍵,,在求25~50之間的兩數(shù)的平方時(shí),若把它們記住了,,就可以很省事了,。它們是: 21 × 21 = 441 22 × 22 = 484 23 × 23 = 529 24 × 24 = 576 求25~50 的兩位數(shù)的平方,用底數(shù)減去25,,得數(shù)為前積,,50減去底數(shù)所得的差的平方作為后積,滿百進(jìn)1,,沒(méi)有十位補(bǔ)0,。 例:37 × 37 37 - 25 = 12-- (50 - 37)^2 = 169 ---------------------- 1369 注意:底數(shù)減去25后,要記住在得數(shù)的后面留兩個(gè)位置給十位和個(gè)位,。 例:26 × 26 26 - 25 = 1-- (50-26)^2 = 576 ------------------- 676 C,、加減法 一、補(bǔ)數(shù)的概念與應(yīng)用 補(bǔ)數(shù)的概念:補(bǔ)數(shù)是指從10、100,、1000……中減去某一數(shù)后所剩下的數(shù),。 例如10減去9等于1,因此9的補(bǔ)數(shù)是1,,反過(guò)來(lái),,1的補(bǔ)數(shù)是9。 補(bǔ)數(shù)的應(yīng)用:在速算方法中將很常用到補(bǔ)數(shù),。例如求兩個(gè)接近100的數(shù)的乘法或除數(shù),,將看起來(lái)復(fù)雜的減法運(yùn)算轉(zhuǎn)為簡(jiǎn)單的加法運(yùn)算等等。 D,、除法速算 一,、某數(shù)除以5、25,、125時(shí) 1,、 被除數(shù) ÷ 5 = 被除數(shù) ÷ (10 ÷ 2) = 被除數(shù) ÷ 10 × 2 = 被除數(shù) × 2 ÷ 10 2、 被除數(shù) ÷ 25 = 被除數(shù) × 4 ÷100 = 被除數(shù) × 2 × 2 ÷100 3,、 被除數(shù) ÷ 125 = 被除數(shù) × 8 ÷100 = 被除數(shù) × 2 × 2 × 2 ÷100 在加、減,、乘,、除四則運(yùn)算中除法是最麻煩的一項(xiàng),即使使用速算法很多時(shí)候也要加上筆算才能更快更準(zhǔn)地算出答案,。因本人水平所限,,上面的算法不一定是最好的心算法。 ------------------------------------------------------------------------- 一,、關(guān)于9的數(shù)學(xué)速算技巧(兩位數(shù)乘法) 關(guān)于9的口訣: 1 × 9 = 9 2 × 9 = 18 3 × 9 = 27 4 × 9 = 36 5 × 9 = 45 6 × 9 = 54 7 × 9 = 63 8 × 9 = 72 9 × 9 = 81 上面的口訣小朋友們已經(jīng)會(huì)了嗎? 小學(xué)一年級(jí)可能只學(xué)了加法,,二年級(jí)第一學(xué)期數(shù)學(xué)就要學(xué)乘法口訣了。 其實(shí)很多家長(zhǎng)可能在小朋友沒(méi)上學(xué)時(shí)就教會(huì)了上面的口訣了,。 但是小朋友有沒(méi)有再細(xì)看一下上面的口訣有什么特點(diǎn)呢,? 從上面的口訣口有沒(méi)有看到從1到9任何一個(gè)數(shù)和9相乘的積,個(gè)位數(shù)和十位數(shù) 的和還是等于9,。 你看上面的:0 + 9 =9,;1 + 8 = 9;2 + 7 = 9,;3 + 6 = 9,; 4 + 5 = 9;5 + 4 = 9,;6 + 3 = 9,;7 + 2 = 9;8 + 1 = 9 或許小朋友們會(huì)問(wèn),發(fā)現(xiàn)這個(gè)秘密有什么用呢,? 我的回答是很有用的,。這是鍛煉你們善于觀察、總結(jié),、找出事物規(guī)律的基礎(chǔ),。 下面我們?cè)僮鲆恍?fù)雜一點(diǎn)的乘法: 18 × 12 = ? 27 × 12 = ,? 36 × 12 = ,? 45 × 12 = ? 54 × 12 = ,? 63 × 12 = ,? 72 × 12 = ? 81 × 12 = ,? 關(guān)于兩位數(shù)的乘法,,可能要等到3年級(jí)才能學(xué)到,但小朋友是不是看到了上面的題目中,,前面的乘數(shù)都是9的倍數(shù),,而且個(gè)位和十位的和都等于9。 這樣我們能不能找到一種簡(jiǎn)便的算法呢,?也就是把兩位數(shù)的乘法變成一位數(shù)的乘法呢,? 我們先把上面這些數(shù)變一變。 18 = 1 × 10 + 8,;27 = 2 × 10 + 7,;36 = 3 × 10 + 6; 45 = 4 × 10 + 5,;54 = 5 × 10 + 4,;63 = 6 × 10 + 3; 72 = 7 × 10 + 2,;81 = 8 × 10 + 1,; 我們?cè)侔焉厦娴臄?shù)變一變好嗎? 1 × 10 + 8 = 1 × 9 + 1+8 = 1 × 9 + 9 = 1 × 9 + 9 = 2 × 9 當(dāng)然如果知道口訣你們可以直接把18 = 2 × 9 這里主要是為了讓小朋友學(xué)會(huì)把一個(gè)數(shù)拆來(lái)拆去的方法,。 同樣的方法你們可以拆出下面的數(shù),,也可以背口訣,你們自己回去練習(xí)吧,。 27 = 3 × 9 ,; 36 = 4 × 9 ;45 = 5 × 9 54 = 6 × 9 ,; 63 = 7 × 9 ,;72 = 8 × 9 81 = 9 × 9 為了找到計(jì)算上面問(wèn)題的方法,,我們把上面的式子再變一次。 18 = 2×(10-1),;27 = 3×(10-1),;36 = 4×(10-1) 45 = 5×(10-1);54 = 6×(10-1),;63 = 7×(10-1) 72 = 8×(10-1),;81 = 9×(10-1) 現(xiàn)在我們來(lái)算上面的問(wèn)題: 18 × 12 = 2×(10-1)× 12 = 2 ×(12 ×10 - 12) = 2 ×(120- 12) 括號(hào)里的加法小朋友們應(yīng)該會(huì)了吧,那是一年級(jí)就會(huì)了的,。 120 - 12 = 108,; 這樣就有了 18 × 12 = 2 × 108 = 216 是不是把一個(gè)兩位數(shù)的乘法變成了一位數(shù)的乘法? 而且可以通過(guò)口算就得出結(jié)果,?小朋友們可以自己試一試嗎,? 我用這種方法教威威算乘法,他只需要我算這一個(gè),,后邊的題目就自己會(huì)算了,。 上面我們的計(jì)算好象很麻煩,其實(shí)現(xiàn)在總結(jié)一下就簡(jiǎn)單了,。 看下一個(gè)題目: 27 × 12 = 3×(10-1)× 12 = 3 ×(120- 12) = 3 × 108 = 324 36 × 12 = 4×(10-1)× 12 = 4 ×(120- 12) = 4 × 108 = 432 小朋友發(fā)現(xiàn)什么規(guī)律沒(méi)有,?下面的題目好象不用算了,都是把前面的數(shù)加1再乘108 45 × 12 = 5 × 108 = 540 54 × 12 = 6 × 108 = 648 63 × 12 = 7 × 108 = 756 72 × 12 = 8 × 108 = 864 81 × 12 = 9 × 108 = 972 我們?cè)倏纯瓷厦娴挠?jì)算結(jié)果,,小朋友發(fā)現(xiàn)什么了嗎,? 我們把一個(gè)兩位數(shù)乘法變成了一位數(shù)的乘法。其中一個(gè)乘數(shù)的個(gè)位和十位的和等于9,,這樣變化以后的數(shù)中一位數(shù)的那個(gè)乘數(shù),都是正好比前面的乘數(shù)大1,。 而后面的一個(gè)兩位數(shù)也有一個(gè)特點(diǎn),,就是一個(gè)連續(xù)數(shù)(12),1和2是連續(xù)的,。 能不能找到一種更簡(jiǎn)便的計(jì)算方法呢,? 為了找到一種更簡(jiǎn)便的算法。我在這里給小朋友引入一個(gè)新的名詞——補(bǔ)數(shù),。 什么是補(bǔ)數(shù)呢,?因?yàn)檫@個(gè)名詞很簡(jiǎn)單,所以就算是幼兒園的小朋友也很快會(huì)明白的,。 1 + 9 = 10,;2 + 8 = 10;3 + 7 = 10,;4 + 6 = 10,;5 + 5 = 10,; 6 + 4 = 10;7 + 3 = 10,;8 + 2 = 10,;9 + 1 = 10; 從上面的幾個(gè)加法可見(jiàn),,如果兩個(gè)數(shù)的和等于10,,那么這兩個(gè)數(shù)就互為補(bǔ)數(shù)。 也就是說(shuō)1和9為補(bǔ)數(shù),,2和8為補(bǔ)數(shù),,3和7為補(bǔ)數(shù),4和6為補(bǔ)數(shù),,5的補(bǔ)數(shù)還是5就不用記了,,只要記4個(gè)就行了。 現(xiàn)在我們?cè)倏纯瓷厦娴挠?jì)算結(jié)果: 拿一個(gè) 63 × 12 = 7 × 108 = 756 舉例吧 結(jié)果的最前面一個(gè)數(shù)是7(不用管它是什么位),,是不是正好等于第一個(gè)乘數(shù)(63)中前面的數(shù)加1,? 6 + 1 = 7 結(jié)果的后兩位怎么算出來(lái)的呢?如果拿這個(gè)7去乘后面那個(gè)乘數(shù)(12)的最后一位的補(bǔ)數(shù)(8)會(huì)是什么,? 7 × 8 = 56 呵呵,,我們現(xiàn)在不用再分解了,只要把第一個(gè)乘數(shù)(63)中前面的數(shù)加1就是結(jié)果的最前面的數(shù),,再把這個(gè)數(shù)乘以后面那個(gè)乘數(shù)(12)的最后一位的補(bǔ)數(shù)(8)就得到結(jié)果的后兩位,。 這樣行嗎?如果行的話,,那可真是太快了,,真的是速算了。 試一試其他的題: 18 × 12 = 第一個(gè)乘數(shù)(18)的前面的數(shù)加1:1 + 1 =2 ——結(jié)果最前面的數(shù) 拿2去乘第二個(gè)乘數(shù)(12)的后面的數(shù)(2)的補(bǔ)數(shù)(8):2×8=16 結(jié)果就是 216,??匆豢瓷厦鎸?duì)嗎? 27 × 12 = 結(jié)果最前面的數(shù)——2 + 1 =3 結(jié)果最后面的數(shù)——3 ×8 = 24 結(jié)果 324 36 × 12 = 結(jié)果最前面的數(shù)——3 + 1 =4 結(jié)果最后面的數(shù)——4 ×8 = 32 結(jié)果 432 45 × 12 = 結(jié)果最前面的數(shù)——4 + 1 =5 結(jié)果最后面的數(shù)——5 ×8 = 40 結(jié)果 540 54 × 12 = 結(jié)果最前面的數(shù)——5 + 1 =6 結(jié)果最后面的數(shù)——6 ×8 = 48 結(jié)果 648 63 × 12 = 結(jié)果最前面的數(shù)——6 + 1 =7 結(jié)果最后面的數(shù)——7 ×8 = 56 結(jié)果 756 72 × 12 = 結(jié)果最前面的數(shù)——7 + 1 =8 結(jié)果最后面的數(shù)——8 ×8 = 64 結(jié)果 864 81 × 12 = 結(jié)果最前面的數(shù)——8 + 1 =9 結(jié)果最后面的數(shù)——9 ×8 = 72 結(jié)果 972 計(jì)算結(jié)果是不是和上面的方法一樣,? 小朋友從結(jié)果中還能看出什么,? 是不是計(jì)算結(jié)果的三位數(shù)的和還是等于9或者是9的倍數(shù)? 自己算一下看是不是,? 看我這篇文章的小朋友,,下面我給你們出幾個(gè)題,看你們掌握了方法沒(méi)有,。 54 × 34 = ,? 18 × 78 = ? 36 × 56 = ,? 72 × 89 = ,? 45 × 67 = ,? 27 × 45 = ? 81 × 23 = ,? 通過(guò)這個(gè)題目,,我主要是為了讓小朋友能從一個(gè)題目中舉一反三,舉一反十 從中發(fā)現(xiàn)規(guī)律性的東西,。這樣不需要做太多的題目就可以快速掌握數(shù)學(xué)的加,、減、乘,、除運(yùn)算,。 上面的題目如果再擴(kuò)展一下,把后面的連續(xù)數(shù)擴(kuò)大到多位數(shù),。 如:123,、234、345,、2345,、34567、123456,、23456789等等 看一看有沒(méi)有什么運(yùn)算規(guī)律,,或許你們都能找出快速的計(jì)算方法。 如果能的話,,象 63 × 2345678 = 這樣的題目你們用口算就能快速計(jì)算出結(jié)果來(lái),。 我相信只要不斷總結(jié)科學(xué)的方法,個(gè)個(gè)小孩都是天才,! 如果不能找到方法,,我明天再幫你們尋找速算的方法。 |
|