久久国产成人av_抖音国产毛片_a片网站免费观看_A片无码播放手机在线观看,色五月在线观看,亚洲精品m在线观看,女人自慰的免费网址,悠悠在线观看精品视频,一级日本片免费的,亚洲精品久,国产精品成人久久久久久久

分享

關(guān)于數(shù)據(jù)分析中NumPy,,Pandas,看完這一篇基本夠了

 禁忌石 2023-07-01 發(fā)布于浙江

前言

數(shù)據(jù)分析是Python的重要應(yīng)用領(lǐng)域之一:Python在數(shù)據(jù)分析領(lǐng)域有著廣泛的應(yīng)用,,許多數(shù)據(jù)科學(xué)家和分析師使用Python作為主要的數(shù)據(jù)分析工具,。學(xué)好數(shù)據(jù)分析可以讓你更好地應(yīng)用Python來(lái)解決實(shí)際問(wèn)題,并提升在數(shù)據(jù)分析領(lǐng)域的競(jìng)爭(zhēng)力,。

文章圖片1

在當(dāng)今信息爆炸的時(shí)代,,數(shù)據(jù)分析能力成為了一種重要的技能。無(wú)論是在工作中還是個(gè)人生活中,,我們都需要從大量的數(shù)據(jù)中提取有用的信息和洞察,,并做出相應(yīng)的決策。學(xué)好數(shù)據(jù)分析可以幫助你更好地理解和利用數(shù)據(jù),,提高決策的準(zhǔn)確性和效率,。

數(shù)據(jù)分析可以幫助我們從數(shù)據(jù)中發(fā)現(xiàn)規(guī)律、趨勢(shì)和模式,,從而做出更加明智的決策和創(chuàng)新,。學(xué)好數(shù)據(jù)分析可以讓你更好地理解數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)中的價(jià)值,,并將其應(yīng)用于實(shí)際的業(yè)務(wù)和創(chuàng)新中,。

而且數(shù)據(jù)分析是許多其他領(lǐng)域的基礎(chǔ),如機(jī)器學(xué)習(xí),、人工智能,、金融分析、市場(chǎng)營(yíng)銷等,。學(xué)好數(shù)據(jù)分析可以為你進(jìn)一步學(xué)習(xí)和應(yīng)用這些領(lǐng)域提供堅(jiān)實(shí)的基礎(chǔ),。

學(xué)習(xí)數(shù)據(jù)分析可以培養(yǎng)你的邏輯思維、問(wèn)題解決能力和創(chuàng)新思維,。數(shù)據(jù)分析需要你從數(shù)據(jù)中提取有用的信息,、進(jìn)行推理和推斷,并做出相應(yīng)的結(jié)論,。這種思維方式在許多其他領(lǐng)域也是非常有價(jià)值的,。

總之,,學(xué)好數(shù)據(jù)分析可以讓你更好地應(yīng)用Python解決實(shí)際問(wèn)題,提高決策的準(zhǔn)確性和效率,,并為你進(jìn)一步學(xué)習(xí)和應(yīng)用其他領(lǐng)域提供堅(jiān)實(shí)的基礎(chǔ),。

接下來(lái)我們就詳細(xì)介紹:NumPy,,Pandas的種種

python文檔+筆記+了解接單+源碼獲取方式

文章圖片2

一丶NumPy篇

1.NumPy基本類型

在數(shù)據(jù)分析中,,NumPy(Numerical Python)是一個(gè)重要的Python庫(kù),它提供了高性能的多維數(shù)組對(duì)象和用于處理這些數(shù)組的函數(shù),。以下是NumPy中的一些基本數(shù)據(jù)類型:

數(shù)值類型(Numeric Types):

  • int:整數(shù)類型,,如int8、int16,、int32,、int64等。
  • uint:無(wú)符號(hào)整數(shù)類型,,如uint8,、uint16、uint32,、uint64等,。
  • float:浮點(diǎn)數(shù)類型,如float16,、float32,、float64等。
  • complex:復(fù)數(shù)類型,,如complex64,、complex128等。

布爾類型(Boolean Type):

  • bool:布爾類型,,只有兩個(gè)值True和False,。

字符串類型(String Type):

  • string:字符串類型,用于存儲(chǔ)文本數(shù)據(jù),。

時(shí)間類型(Datetime Type):

  • datetime64:日期和時(shí)間類型,,用于存儲(chǔ)日期和時(shí)間數(shù)據(jù)。

對(duì)象類型(Object Type):

  • object:對(duì)象類型,,可以存儲(chǔ)任意Python對(duì)象,。

這些數(shù)據(jù)類型可以用于創(chuàng)建NumPy數(shù)組,通過(guò)指定dtype參數(shù)來(lái)指定數(shù)組的數(shù)據(jù)類型,。例如,,可以使用np.array函數(shù)創(chuàng)建一個(gè)整數(shù)類型的數(shù)組:

import numpy as nparr = np.array([1, 2, 3, 4], dtype=np.int32)print(arr.dtype) # 輸出 int32

在數(shù)據(jù)分析中,根據(jù)具體的需求和數(shù)據(jù)類型的特點(diǎn),,選擇合適的數(shù)據(jù)類型可以提高計(jì)算效率和節(jié)省內(nèi)存空間,。NumPy還提供了豐富的函數(shù)和方法來(lái)處理這些不同類型的數(shù)據(jù),,例如數(shù)值計(jì)算、數(shù)組操作,、統(tǒng)計(jì)分析等,。

2.NumPy基礎(chǔ)數(shù)據(jù)結(jié)構(gòu)

NumPy(Numerical Python)是Python中用于科學(xué)計(jì)算和數(shù)據(jù)分析的重要庫(kù)。它提供了高性能的多維數(shù)組對(duì)象(ndarray)和用于處理這些數(shù)組的函數(shù),。以下是NumPy中的一些基礎(chǔ)數(shù)據(jù)結(jié)構(gòu):

ndarray(N-dimensional Array): ndarray是NumPy中最重要的數(shù)據(jù)結(jié)構(gòu),,它是一個(gè)多維數(shù)組對(duì)象。ndarray可以是一維,、二維或更高維的數(shù)組,,可以存儲(chǔ)相同類型的元素。ndarray提供了快速的數(shù)值計(jì)算和向量化操作,,是進(jìn)行數(shù)據(jù)分析的基礎(chǔ),。

Scalar(標(biāo)量): 標(biāo)量是NumPy中的基本數(shù)據(jù)類型,表示單個(gè)的數(shù)值,。標(biāo)量可以是整數(shù),、浮點(diǎn)數(shù)、布爾值等,。

Vector(向量): 向量是一維的ndarray數(shù)組,,表示一列數(shù)值。向量可以通過(guò)一維數(shù)組創(chuàng)建,,例如np.array([1, 2, 3]),。

Matrix(矩陣): 矩陣是二維的ndarray數(shù)組,表示一個(gè)二維表格的數(shù)值,。矩陣可以通過(guò)二維數(shù)組創(chuàng)建,,例如np.array([[1, 2], [3, 4]])。

Tensor(張量): 張量是NumPy中的高維數(shù)組,,可以是三維,、四維或更高維的數(shù)組。張量在深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)中經(jīng)常使用,。

多維數(shù)組: np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]):創(chuàng)建一個(gè)三維數(shù)組,,包含兩個(gè)二維數(shù)組。

數(shù)組屬性

  • shape:數(shù)組的維度信息,,返回一個(gè)元組,,例如(2, 3)表示2行3列的數(shù)組。
  • dtype:數(shù)組元素的數(shù)據(jù)類型,。

數(shù)組操作

  • indexing和slicing:通過(guò)索引和切片操作獲取和修改數(shù)組元素,。
  • reshape:改變數(shù)組的形狀。
  • transpose:交換數(shù)組的維度。

數(shù)學(xué)運(yùn)算

  • 加法,、減法,、乘法、除法等數(shù)學(xué)運(yùn)算,。
  • 常用函數(shù):例如np.sum(),、np.mean()np.max()等用于對(duì)數(shù)組進(jìn)行統(tǒng)計(jì)計(jì)算,。

除了基本的數(shù)據(jù)結(jié)構(gòu),,NumPy還提供了很多高級(jí)功能,如廣播(broadcasting),、向量化操作等,,可以大大提高數(shù)據(jù)分析的效率,。

使用NumPy進(jìn)行數(shù)據(jù)分析時(shí),,通常還會(huì)結(jié)合其他庫(kù),如Pandas,、Matplotlib等,,以實(shí)現(xiàn)更強(qiáng)大的數(shù)據(jù)分析和可視化功能。

3.NumPy通用函數(shù)

NumPy(Numerical Python)是Python中用于科學(xué)計(jì)算和數(shù)據(jù)分析的重要庫(kù),。它提供了許多通用函數(shù)(Universal Functions,,簡(jiǎn)稱ufuncs),用于對(duì)NumPy數(shù)組進(jìn)行元素級(jí)別的操作和計(jì)算,。以下是一些常用的NumPy通用函數(shù)及其功能:

數(shù)學(xué)函數(shù):

  • np.abs(arr):計(jì)算數(shù)組元素的絕對(duì)值,。
  • np.sqrt(arr):計(jì)算數(shù)組元素的平方根。
  • np.exp(arr):計(jì)算數(shù)組元素的指數(shù),。
  • np.log(arr):計(jì)算數(shù)組元素的自然對(duì)數(shù),。
  • np.sin(arr)np.cos(arr),、np.tan(arr):計(jì)算數(shù)組元素的正弦,、余弦和正切值。
  • np.arcsin(arr),、np.arccos(arr),、np.arctan(arr):計(jì)算數(shù)組元素的反正弦、反余弦和反正切值,。

統(tǒng)計(jì)函數(shù):

  • np.mean(arr):計(jì)算數(shù)組元素的平均值,。
  • np.median(arr):計(jì)算數(shù)組元素的中位數(shù)。
  • np.std(arr):計(jì)算數(shù)組元素的標(biāo)準(zhǔn)差,。
  • np.var(arr):計(jì)算數(shù)組元素的方差,。
  • np.min(arr)np.max(arr):計(jì)算數(shù)組元素的最小值和最大值。
  • np.sum(arr):計(jì)算數(shù)組元素的總和,。

邏輯函數(shù):

  • np.logical_and(arr1, arr2):對(duì)兩個(gè)數(shù)組進(jìn)行邏輯與操作,。
  • np.logical_or(arr1, arr2):對(duì)兩個(gè)數(shù)組進(jìn)行邏輯或操作。
  • np.logical_not(arr):對(duì)數(shù)組進(jìn)行邏輯非操作,。

形狀操作函數(shù):

  • np.reshape(arr, new_shape):改變數(shù)組的形狀,。
  • np.transpose(arr):交換數(shù)組的維度。
  • np.flatten(arr):將多維數(shù)組轉(zhuǎn)換為一維數(shù)組,。

其他函數(shù):

  • np.concatenate((arr1, arr2), axis):沿指定軸連接兩個(gè)或多個(gè)數(shù)組,。
  • np.sort(arr):對(duì)數(shù)組進(jìn)行排序。
  • np.unique(arr):返回?cái)?shù)組中的唯一值,。

這些通用函數(shù)可以對(duì)NumPy數(shù)組進(jìn)行各種元素級(jí)別的操作和計(jì)算,,提供了豐富的功能來(lái)處理和分析數(shù)據(jù)。通過(guò)熟練掌握這些函數(shù),,可以高效地進(jìn)行數(shù)據(jù)分析和科學(xué)計(jì)算,。

4.NumPy索引及切片

在NumPy中,索引和切片是對(duì)數(shù)組進(jìn)行訪問(wèn)和操作的重要方式,。以下是對(duì)NumPy數(shù)組進(jìn)行索引和切片的詳細(xì)分析:

索引:

  • 一維數(shù)組索引:可以使用整數(shù)索引訪問(wèn)一維數(shù)組中的元素,。例如,arr[0]表示訪問(wèn)一維數(shù)組arr中的第一個(gè)元素,。
  • 多維數(shù)組索引:可以使用逗號(hào)分隔的整數(shù)索引訪問(wèn)多維數(shù)組中的元素,。例如,arr[0, 1]表示訪問(wèn)多維數(shù)組arr中的第一行第二列的元素,。

切片:

  • 一維數(shù)組切片:可以使用冒號(hào)(:)進(jìn)行切片操作,。例如,arr[1:4]表示從一維數(shù)組arr的索引1開(kāi)始到索引4之前的元素(不包括索引4),。
  • 多維數(shù)組切片:可以使用逗號(hào)分隔的冒號(hào)(:)進(jìn)行切片操作,。例如,arr[:, 1:4]表示從多維數(shù)組arr的所有行中,,從索引1開(kāi)始到索引4之前的列(不包括索引4),。

布爾索引:

可以使用布爾數(shù)組作為索引來(lái)選擇滿足特定條件的元素。例如,,arr[arr > 5]表示選擇數(shù)組arr中大于5的元素,。

花式索引:

可以使用整數(shù)數(shù)組作為索引來(lái)選擇指定位置的元素。例如,,arr[[0, 2, 4]]表示選擇數(shù)組arr中索引為0,、2和4的元素。

需要注意的是,,索引和切片操作返回的是原始數(shù)組的視圖(view),,而不是副本(copy),。這意味著對(duì)視圖的修改會(huì)影響原始數(shù)組。如果需要?jiǎng)?chuàng)建副本,,可以使用arr.copy()方法,。

5.NumPy隨機(jī)數(shù)

在數(shù)據(jù)分析中,NumPy的random模塊提供了生成隨機(jī)數(shù)的函數(shù),,用于模擬隨機(jī)實(shí)驗(yàn),、生成隨機(jī)樣本和進(jìn)行隨機(jī)抽樣等操作。以下是NumPy中常用的隨機(jī)數(shù)函數(shù)的詳細(xì)分析:

生成隨機(jī)數(shù):

  • np.random.rand(shape):生成指定形狀的[0, 1)之間的均勻分布隨機(jī)數(shù),。
  • np.random.randn(shape):生成指定形狀的標(biāo)準(zhǔn)正態(tài)分布(均值為0,,標(biāo)準(zhǔn)差為1)的隨機(jī)數(shù)。
  • np.random.randint(low, high, size):生成指定范圍內(nèi)的整數(shù)隨機(jī)數(shù),。
  • np.random.random_sample(shape):生成指定形狀的[0, 1)之間的均勻分布隨機(jī)數(shù),。
  • np.random.random(shape):生成指定形狀的[0, 1)之間的均勻分布隨機(jī)數(shù)。
  • np.random.uniform(low, high, size):生成指定范圍內(nèi)的均勻分布隨機(jī)數(shù),。
  • np.random.normal(loc, scale, size):生成指定均值和標(biāo)準(zhǔn)差的正態(tài)分布隨機(jī)數(shù),。
  • np.random.standard_normal(size):生成標(biāo)準(zhǔn)正態(tài)分布(均值為0,標(biāo)準(zhǔn)差為1)的隨機(jī)數(shù),。

隨機(jī)抽樣:

  • np.random.choice(a, size, replace, p):從給定的一維數(shù)組a中進(jìn)行隨機(jī)抽樣,。
  • np.random.shuffle(arr):對(duì)數(shù)組進(jìn)行原地隨機(jī)重排。
  • np.random.permutation(arr):返回一個(gè)隨機(jī)重排的數(shù)組副本,。

隨機(jī)種子:

  • np.random.seed(seed):設(shè)置隨機(jī)數(shù)生成器的種子,用于生成可重復(fù)的隨機(jī)數(shù)序列,。

這些隨機(jī)數(shù)函數(shù)可以用于生成各種類型的隨機(jī)數(shù),,滿足不同的需求。通過(guò)靈活使用這些函數(shù),,可以進(jìn)行模擬實(shí)驗(yàn),、生成隨機(jī)樣本、進(jìn)行隨機(jī)抽樣等操作,,支持?jǐn)?shù)據(jù)分析和統(tǒng)計(jì)推斷的應(yīng)用,。

6.NumPy數(shù)據(jù)的輸入輸出

在數(shù)據(jù)分析中,NumPy提供了多種方式來(lái)進(jìn)行數(shù)據(jù)的輸入和輸出,。以下是NumPy中常用的數(shù)據(jù)輸入輸出方式的詳細(xì)解釋:

從文件讀取數(shù)據(jù):

  • np.loadtxt(fname, delimiter=None, dtype=float):從文本文件中加載數(shù)據(jù)到NumPy數(shù)組,。可以指定分隔符和數(shù)據(jù)類型,。
  • np.genfromtxt(fname, delimiter=None, dtype=float):從文本文件中加載數(shù)據(jù)到NumPy數(shù)組,,支持缺失值處理和數(shù)據(jù)類型推斷。
  • np.fromfile(file, dtype=float, count=-1, sep=''):從二進(jìn)制文件中加載數(shù)據(jù)到NumPy數(shù)組,。

將數(shù)據(jù)寫入文件:

  • np.savetxt(fname, X, fmt='%.18e', delimiter=' '):將NumPy數(shù)組保存為文本文件,。可以指定格式和分隔符。
  • np.savetxt(fname, X, fmt='%.18e', delimiter=' ', header='', footer='', comments='# '):將NumPy數(shù)組保存為文本文件,,并添加頭部,、尾部和注釋。 從CSV文件讀取數(shù)據(jù):
  • np.genfromtxt(fname, delimiter=',', dtype=None, names=True):從CSV文件中加載數(shù)據(jù)到NumPy結(jié)構(gòu)化數(shù)組,??梢灾付ǚ指舴?shù)據(jù)類型和列名,。

將數(shù)據(jù)寫入CSV文件:

  • np.savetxt(fname, X, delimiter=',', fmt='%.18e', header='', footer='', comments='# '):將NumPy數(shù)組保存為CSV文件,。可以指定分隔符,、格式,、頭部、尾部和注釋,。

從數(shù)據(jù)庫(kù)讀取數(shù)據(jù):

  • np.frombuffer(buffer, dtype=float, count=-1, offset=0):從緩沖區(qū)中加載數(shù)據(jù)到NumPy數(shù)組,。
  • np.fromstring(string, dtype=float, count=-1, sep=''):從字符串中加載數(shù)據(jù)到NumPy數(shù)組。

將數(shù)據(jù)寫入數(shù)據(jù)庫(kù):

  • np.ndarray.tofile(fid, sep='', format='%s'):將NumPy數(shù)組保存為二進(jìn)制文件,。

這些數(shù)據(jù)輸入輸出函數(shù)提供了靈活的方式來(lái)讀取和寫入數(shù)據(jù),,支持多種數(shù)據(jù)格式和數(shù)據(jù)源。通過(guò)使用這些函數(shù),,可以方便地進(jìn)行數(shù)據(jù)的導(dǎo)入和導(dǎo)出,,與其他數(shù)據(jù)源進(jìn)行交互,并進(jìn)行數(shù)據(jù)分析和處理,。

二丶Pandas篇

1.pandas核心概念

在數(shù)據(jù)分析中,,pandas是一個(gè)重要的Python庫(kù),提供了高效的數(shù)據(jù)結(jié)構(gòu)和數(shù)據(jù)分析工具,。以下是pandas的核心概念的詳細(xì)解釋:

Series(序列):

Series是pandas中的一維標(biāo)記數(shù)組,,類似于帶有標(biāo)簽的一維數(shù)組。它由兩個(gè)數(shù)組組成,,一個(gè)用于存儲(chǔ)數(shù)據(jù),,另一個(gè)用于存儲(chǔ)標(biāo)簽(索引)。

Series可以通過(guò)多種方式創(chuàng)建,,例如從列表,、數(shù)組、字典等,。

Series提供了許多方法和屬性,,用于對(duì)數(shù)據(jù)進(jìn)行索引、切片,、過(guò)濾,、計(jì)算等操作,。

DataFrame(數(shù)據(jù)框):

DataFrame是pandas中的二維表格數(shù)據(jù)結(jié)構(gòu),類似于電子表格或SQL中的表,。它由行索引和列索引組成,,每列可以是不同的數(shù)據(jù)類型。

DataFrame可以通過(guò)多種方式創(chuàng)建,,例如從二維數(shù)組,、字典、CSV文件等,。

DataFrame提供了豐富的方法和屬性,,用于對(duì)數(shù)據(jù)進(jìn)行索引、切片,、過(guò)濾,、計(jì)算、合并,、重塑等操作,。

Index(索引):

Index是pandas中的標(biāo)簽數(shù)組,用于標(biāo)識(shí)Series或DataFrame中的行或列,。

Index可以是整數(shù),、字符串、日期等類型,,可以是唯一的或重復(fù)的,。

Index提供了許多方法和屬性,用于對(duì)索引進(jìn)行操作和處理,。

數(shù)據(jù)對(duì)齊:

pandas的一個(gè)重要特性是數(shù)據(jù)對(duì)齊,,即在進(jìn)行操作時(shí),pandas會(huì)自動(dòng)根據(jù)索引對(duì)數(shù)據(jù)進(jìn)行對(duì)齊,,確保數(shù)據(jù)的正確對(duì)應(yīng)。

數(shù)據(jù)對(duì)齊使得在處理不完整或不規(guī)則數(shù)據(jù)時(shí)更加方便,,可以避免許多錯(cuò)誤和麻煩,。

缺失數(shù)據(jù)處理:

pandas提供了靈活的方法來(lái)處理缺失數(shù)據(jù),例如使用NaN(Not a Number)表示缺失值,。

可以使用方法如isnull(),、notnull()dropna(),、fillna()等來(lái)檢測(cè)和處理缺失數(shù)據(jù),。

數(shù)據(jù)分組和聚合:

pandas提供了強(qiáng)大的數(shù)據(jù)分組和聚合功能,可以根據(jù)某些條件將數(shù)據(jù)分組,,并對(duì)每個(gè)組進(jìn)行聚合操作,,如求和,、平均值、計(jì)數(shù)等,。

可以使用方法如groupby(),、agg()transform()等來(lái)進(jìn)行數(shù)據(jù)分組和聚合操作,。

這些核心概念是pandas在數(shù)據(jù)分析中的基礎(chǔ),,通過(guò)靈活運(yùn)用這些概念和相應(yīng)的方法,可以高效地進(jìn)行數(shù)據(jù)處理,、分析和建模,。

2.數(shù)據(jù)結(jié)構(gòu)series索引

在pandas中,Series是一種一維的數(shù)據(jù)結(jié)構(gòu),,類似于帶有標(biāo)簽的數(shù)組,。Series具有兩個(gè)主要的組成部分:數(shù)據(jù)和索引。以下是對(duì)pandas Series索引的詳細(xì)解釋:

索引標(biāo)簽:

Series的索引是一組標(biāo)簽,,用于標(biāo)識(shí)每個(gè)元素,。索引可以是整數(shù)、字符串,、日期等類型,。

索引標(biāo)簽可以通過(guò)series.index屬性訪問(wèn)。

默認(rèn)索引:

如果沒(méi)有顯式指定索引標(biāo)簽,,pandas會(huì)自動(dòng)創(chuàng)建一個(gè)默認(rèn)的整數(shù)索引,,從0開(kāi)始遞增。

默認(rèn)索引可以通過(guò)series.index屬性訪問(wèn),。

自定義索引:

可以通過(guò)傳遞一個(gè)索引列表來(lái)創(chuàng)建自定義索引的Series,。例如,series = pd.Series(data, index=['a', 'b', 'c']),。

自定義索引可以是唯一的或重復(fù)的,。

索引操作:

可以使用索引標(biāo)簽來(lái)訪問(wèn)Series中的元素。例如,,series['a']表示訪問(wèn)索引標(biāo)簽為'a'的元素,。

可以使用整數(shù)索引來(lái)訪問(wèn)Series中的元素。例如,,series[0]表示訪問(wèn)索引為0的元素,。

可以使用切片操作來(lái)訪問(wèn)Series中的多個(gè)元素。例如,,series['a':'c']表示訪問(wèn)索引標(biāo)簽從'a'到'c'的元素,。

索引對(duì)齊:

在進(jìn)行操作時(shí),pandas會(huì)自動(dòng)根據(jù)索引對(duì)Series進(jìn)行對(duì)齊,,確保數(shù)據(jù)的正確對(duì)應(yīng),。

索引對(duì)齊使得在處理不完整或不規(guī)則數(shù)據(jù)時(shí)更加方便,,可以避免許多錯(cuò)誤和麻煩。

索引修改:

可以通過(guò)重新賦值的方式修改Series的索引,。例如,,series.index = ['x', 'y', 'z']

通過(guò)靈活運(yùn)用Series的索引,,可以方便地對(duì)數(shù)據(jù)進(jìn)行訪問(wèn),、操作和分析。索引提供了一種標(biāo)簽化的方式來(lái)標(biāo)識(shí)和定位數(shù)據(jù),,使得數(shù)據(jù)處理更加直觀和高效,。

3.series基礎(chǔ)技巧

當(dāng)進(jìn)行數(shù)據(jù)分析時(shí),pandas的Series是一個(gè)非常有用的數(shù)據(jù)結(jié)構(gòu),。以下是一些常見(jiàn)的Series基礎(chǔ)技巧的詳細(xì)解釋:

創(chuàng)建Series:

可以使用pd.Series(data, index)函數(shù)創(chuàng)建Series,,其中data可以是列表、數(shù)組,、字典等,,index是可選的索引標(biāo)簽。

例如,,s = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])創(chuàng)建了一個(gè)帶有自定義索引的Series,。

訪問(wèn)Series數(shù)據(jù):

可以使用索引標(biāo)簽或整數(shù)索引來(lái)訪問(wèn)Series中的元素。例如,,s['a']或s[0]都可以訪問(wèn)第一個(gè)元素,。

可以使用切片操作來(lái)訪問(wèn)Series中的多個(gè)元素。例如,,s['a':'c']表示訪問(wèn)索引標(biāo)簽從'a'到'c'的元素,。

Series運(yùn)算:

可以對(duì)Series進(jìn)行基本的數(shù)學(xué)運(yùn)算,如加法,、減法,、乘法和除法。運(yùn)算會(huì)根據(jù)索引對(duì)齊數(shù)據(jù),。

例如,,s1 + s2會(huì)對(duì)兩個(gè)Series對(duì)象進(jìn)行元素級(jí)別的加法運(yùn)算,并根據(jù)索引對(duì)齊數(shù)據(jù),。

篩選數(shù)據(jù):

可以使用布爾索引來(lái)篩選Series中的數(shù)據(jù)。例如,,s[s > 2]會(huì)返回滿足條件的元素,。

可以使用isin()方法來(lái)篩選Series中包含在給定值列表中的元素。

缺失數(shù)據(jù)處理:

可以使用isnull()notnull()方法來(lái)檢測(cè)Series中的缺失數(shù)據(jù),。

可以使用dropna()方法來(lái)刪除Series中的缺失數(shù)據(jù),。

可以使用fillna()方法來(lái)填充Series中的缺失數(shù)據(jù),。

排序和排名:

可以使用sort_values()方法對(duì)Series進(jìn)行排序。

可以使用rank()方法對(duì)Series中的元素進(jìn)行排名,。

統(tǒng)計(jì)分析:

可以使用describe()方法獲取Series的統(tǒng)計(jì)摘要信息,,如均值、標(biāo)準(zhǔn)差,、最小值,、最大值等。

可以使用sum(),、mean(),、median()std()等方法計(jì)算Series的總和,、平均值,、中位數(shù)、標(biāo)準(zhǔn)差等,。

這些基礎(chǔ)技巧可以幫助您更好地使用pandas的Series進(jìn)行數(shù)據(jù)分析和處理,。通過(guò)靈活運(yùn)用這些技巧,可以輕松地操作和分析Series中的數(shù)據(jù),。

4.數(shù)據(jù)結(jié)構(gòu)Dataframe基本概念及創(chuàng)建

在數(shù)據(jù)分析中,,pandas的DataFrame是一個(gè)二維的表格型數(shù)據(jù)結(jié)構(gòu),類似于電子表格或SQL中的表,。DataFrame由行索引和列索引組成,,每列可以是不同的數(shù)據(jù)類型。以下是對(duì)pandas DataFrame的基本概念和創(chuàng)建方式的詳細(xì)解釋:

DataFrame的基本概念:

DataFrame是一個(gè)二維的數(shù)據(jù)結(jié)構(gòu),,由行和列組成,。行索引用于標(biāo)識(shí)和訪問(wèn)DataFrame中的行,列索引用于標(biāo)識(shí)和訪問(wèn)DataFrame中的列,。DataFrame中的每列可以是不同的數(shù)據(jù)類型,,如整數(shù)、浮點(diǎn)數(shù),、字符串等,。

創(chuàng)建DataFrame的方式:

從列表或數(shù)組創(chuàng)建:可以使用pd.DataFrame(data, index, columns)函數(shù)從列表或數(shù)組創(chuàng)建DataFrame。其中data可以是列表,、數(shù)組,、字典等,index是行索引,,columns是列索引,。

  • 從字典創(chuàng)建:可以使用pd.DataFrame(dict)函數(shù)從字典創(chuàng)建DataFrame。字典的鍵將成為列索引,字典的值將成為列數(shù)據(jù),。
  • 從CSV文件創(chuàng)建:可以使用pd.read_csv(file)函數(shù)從CSV文件創(chuàng)建DataFrame,。
  • 從數(shù)據(jù)庫(kù)查詢結(jié)果創(chuàng)建:可以使用pd.read_sql(query, connection)函數(shù)從數(shù)據(jù)庫(kù)查詢結(jié)果創(chuàng)建DataFrame。

DataFrame的屬性和方法:

  • df.shape:返回DataFrame的行數(shù)和列數(shù),。
  • df.head(n):返回DataFrame的前n行,,默認(rèn)為5行。
  • df.tail(n):返回DataFrame的后n行,,默認(rèn)為5行,。
  • df.columns:返回DataFrame的列索引。
  • df.index:返回DataFrame的行索引,。
  • df.info():顯示DataFrame的基本信息,,包括列名、數(shù)據(jù)類型,、非空值數(shù)量等,。
  • df.describe():顯示DataFrame的統(tǒng)計(jì)摘要信息,包括計(jì)數(shù),、均值,、標(biāo)準(zhǔn)差、最小值,、最大值等,。

通過(guò)靈活運(yùn)用這些創(chuàng)建DataFrame的方式和使用DataFrame的屬性和方法,可以方便地進(jìn)行數(shù)據(jù)分析和處理,。DataFrame提供了豐富的功能和方法,,支持?jǐn)?shù)據(jù)的索引、切片,、過(guò)濾,、計(jì)算、合并,、重塑等操作,。

6.Dataframe索引

在pandas中,DataFrame是一個(gè)二維的表格型數(shù)據(jù)結(jié)構(gòu),,由行索引和列索引組成,。以下是對(duì)pandas DataFrame索引的詳細(xì)解釋:

行索引:

行索引用于標(biāo)識(shí)和訪問(wèn)DataFrame中的行。默認(rèn)情況下,,行索引是從0開(kāi)始的整數(shù)索引,,可以通過(guò)df.index屬性訪問(wèn)??梢允褂?span>df.loc[label]或df.iloc[index]來(lái)訪問(wèn)具有特定標(biāo)簽或整數(shù)索引的行,。

列索引:

列索引用于標(biāo)識(shí)和訪問(wèn)DataFrame中的列。默認(rèn)情況下,列索引是從0開(kāi)始的整數(shù)索引,,可以通過(guò)df.columns屬性訪問(wèn)??梢允褂?span>df[column]或df.loc[:, column]來(lái)訪問(wèn)具有特定列名的列,。

自定義索引:

可以通過(guò)傳遞一個(gè)索引列表來(lái)創(chuàng)建自定義的行索引或列索引。例如,,df = pd.DataFrame(data, index=['a', 'b', 'c']),。自定義索引可以是唯一的或重復(fù)的。

多級(jí)索引:

多級(jí)索引是指在DataFrame中使用多個(gè)層次的行索引或列索引,??梢允褂?/span>pd.MultiIndex.from_arrays()pd.MultiIndex.from_tuples()pd.MultiIndex.from_product()等函數(shù)創(chuàng)建多級(jí)索引,??梢允褂?span>df.indexdf.columns屬性訪問(wèn)多級(jí)索引。

索引操作:

可以使用df.loc[row_indexer, column_indexer]來(lái)訪問(wèn)具有特定行索引和列索引的數(shù)據(jù),??梢允褂们衅僮鱽?lái)訪問(wèn)DataFrame中的多行或多列。例如,,df.loc['a':'c', 'x':'z']表示訪問(wèn)行索引從'a'到'c'和列索引從'x'到'z'的數(shù)據(jù),。

重置索引:

可以使用df.reset_index()方法重置行索引,將原來(lái)的行索引轉(zhuǎn)換為默認(rèn)的整數(shù)索引,??梢允褂?span>df.set_index(keys)方法設(shè)置新的行索引或列索引。通過(guò)靈活運(yùn)用DataFrame的索引操作,,可以方便地對(duì)數(shù)據(jù)進(jìn)行訪問(wèn),、操作和分析。索引提供了一種標(biāo)簽化的方式來(lái)標(biāo)識(shí)和定位數(shù)據(jù),,使得數(shù)據(jù)處理更加直觀和高效

7.Dataframe基本技巧

在數(shù)據(jù)分析中,,pandas的DataFrame是一個(gè)非常有用的數(shù)據(jù)結(jié)構(gòu)。以下是一些常見(jiàn)的DataFrame基本技巧的詳細(xì)解釋:

訪問(wèn)DataFrame數(shù)據(jù):

  • 可以使用列名來(lái)訪問(wèn)DataFrame中的列數(shù)據(jù),。例如,,df['column_name']可以訪問(wèn)名為'column_name'的列。
  • 可以使用df.loc[row_indexer, column_indexer]來(lái)訪問(wèn)具有特定行索引和列索引的數(shù)據(jù),。
  • 可以使用df.iloc[row_indexer, column_indexer]來(lái)使用整數(shù)索引訪問(wèn)數(shù)據(jù),。

列操作:

  • 可以使用df['new_column'] = value來(lái)添加新的列,并為每個(gè)元素賦予相同的值,。
  • 可以使用df.drop('column_name', axis=1)來(lái)刪除指定的列,。
  • 可以使用df.rename(columns={'old_name': 'new_name'})來(lái)重命名列。

行操作:

  • 可以使用df.loc[row_indexer]來(lái)訪問(wèn)具有特定行索引的行數(shù)據(jù)。
  • 可以使用df.iloc[row_indexer]來(lái)使用整數(shù)索引訪問(wèn)行數(shù)據(jù),。
  • 可以使用df.drop(row_indexer)來(lái)刪除指定的行,。

篩選數(shù)據(jù):

  • 可以使用布爾索引來(lái)篩選DataFrame中的數(shù)據(jù)。例如,,df[df['column'] > 0]會(huì)返回滿足條件的行數(shù)據(jù),。
  • 可以使用df.isin(values)來(lái)篩選DataFrame中包含在給定值列表中的行數(shù)據(jù)。

缺失數(shù)據(jù)處理:

  • 可以使用df.isnull()df.notnull()方法來(lái)檢測(cè)DataFrame中的缺失數(shù)據(jù),。
  • 可以使用df.dropna()方法來(lái)刪除DataFrame中的缺失數(shù)據(jù),。
  • 可以使用df.fillna(value)方法來(lái)填充DataFrame中的缺失數(shù)據(jù)。

排序和排名:

  • 可以使用df.sort_values(by='column')方法對(duì)DataFrame進(jìn)行排序,。
  • 可以使用df.rank()方法對(duì)DataFrame中的元素進(jìn)行排名,。

統(tǒng)計(jì)分析:

  • 可以使用df.describe()方法獲取DataFrame的統(tǒng)計(jì)摘要信息,如計(jì)數(shù),、均值,、標(biāo)準(zhǔn)差、最小值,、最大值等,。
  • 可以使用df.sum()df.mean(),、df.median(),、df.std()等方法計(jì)算DataFrame的總和、平均值,、中位數(shù),、標(biāo)準(zhǔn)差等。

這些基本技巧可以更好地使用pandas的DataFrame進(jìn)行數(shù)據(jù)分析和處理,。通過(guò)靈活運(yùn)用這些技巧,,可以輕松地操作和分析DataFrame中的數(shù)據(jù)。

8.時(shí)間模塊

在數(shù)據(jù)分析中,,pandas的時(shí)間模塊提供了強(qiáng)大的時(shí)間序列處理功能,。以下是pandas時(shí)間模塊的一些常用功能和方法的詳細(xì)解釋:

時(shí)間戳(Timestamp):

時(shí)間戳表示某個(gè)具體的時(shí)間點(diǎn),可以使用pd.Timestamp()函數(shù)創(chuàng)建時(shí)間戳對(duì)象,。時(shí)間戳可以用于表示日期,、時(shí)間或日期時(shí)間。

時(shí)間范圍(DatetimeIndex):

時(shí)間范圍是一種特殊的索引類型,,用于表示一段連續(xù)的時(shí)間序列,。可以使用pd.date_range()函數(shù)創(chuàng)建時(shí)間范圍對(duì)象,,指定起始日期,、結(jié)束日期和頻率,。

時(shí)間序列數(shù)據(jù)(Series):

時(shí)間序列數(shù)據(jù)是指按照時(shí)間順序排列的數(shù)據(jù),可以使用時(shí)間戳或時(shí)間范圍作為索引,??梢允褂?/span>pd.Series()函數(shù)創(chuàng)建時(shí)間序列對(duì)象,指定數(shù)據(jù)和索引,。

時(shí)間戳索引(DatetimeIndex):

  • 時(shí)間戳索引是一種特殊的索引類型,,用于按照時(shí)間順序?qū)?shù)據(jù)進(jìn)行索引和切片。
  • 可以使用pd.to_datetime()函數(shù)將字符串轉(zhuǎn)換為時(shí)間戳索引,。
  • 可以使用df.set_index()方法將時(shí)間戳索引設(shè)置為DataFrame的索引。

時(shí)間序列的重采樣:

重采樣是指將時(shí)間序列數(shù)據(jù)從一個(gè)頻率轉(zhuǎn)換為另一個(gè)頻率的過(guò)程,,如從日頻率轉(zhuǎn)換為月頻率,。可以使用resample()方法對(duì)時(shí)間序列進(jìn)行重采樣,,指定目標(biāo)頻率和聚合函數(shù),。

時(shí)間序列的偏移:

時(shí)間序列的偏移是指將時(shí)間序列按照一定的時(shí)間間隔進(jìn)行移動(dòng)的操作??梢允褂?/span>shift()方法對(duì)時(shí)間序列進(jìn)行向前或向后的偏移,。

時(shí)間序列的滾動(dòng)窗口:

  • 滾動(dòng)窗口是指在時(shí)間序列上按照固定大小的窗口進(jìn)行滑動(dòng),并對(duì)窗口內(nèi)的數(shù)據(jù)進(jìn)行聚合操作,。
  • 可以使用rolling()方法創(chuàng)建滾動(dòng)窗口對(duì)象,,然后使用聚合函數(shù)對(duì)窗口內(nèi)的數(shù)據(jù)進(jìn)行計(jì)算。
  • 通過(guò)靈活運(yùn)用pandas的時(shí)間模塊,,可以方便地處理和分析時(shí)間序列數(shù)據(jù),,進(jìn)行時(shí)間相關(guān)的計(jì)算和操作。時(shí)間模塊提供了豐富的功能和方法,,支持時(shí)間戳的創(chuàng)建,、時(shí)間范圍的生成、時(shí)間序列的重采樣,、偏移和滾動(dòng)窗口等操作,。

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,,不代表本站觀點(diǎn),。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買等信息,,謹(jǐn)防詐騙,。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào),。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多