Research articleOpen access Global Trends in Incidence and Burden of Urolithiasis from 1990 to 2019: An Analysis of Global Burden of Disease Study Data European Urology Open Science3 January 2022... 1990-2019年尿石癥發(fā)病率和負(fù)擔(dān)的全球趨勢(shì):全球疾病負(fù)擔(dān)研究數(shù)據(jù)分析患者總結(jié)在這項(xiàng)研究中,我們使用1990年至2019年來(lái)自204個(gè)國(guó)家的數(shù)據(jù)研究了全球結(jié)石疾病負(fù)擔(dān)的趨勢(shì),。我們發(fā)現(xiàn)總體負(fù)擔(dān)有所增加,,但因年齡,社會(huì)人口變量和地理區(qū)域而異,。我們的結(jié)論是,,我們需要適合國(guó)家具體需要的適應(yīng)性強(qiáng)的政策來(lái)解決這一負(fù)擔(dān)。 1. 引言尿石癥是全球最常見(jiàn)的泌尿系統(tǒng)疾病之一,,估計(jì)全球不同地區(qū)的患病率從1%到13%不等[1],,[2]。最近的證據(jù)表明,,由于多種因素,,包括社會(huì)條件,飲食習(xí)慣,,氣候和疾病合并癥的變化[1],,[3],[4],,[5],,全球尿石癥的患病率正在上升。隨著這種變化,,疾病負(fù)擔(dān)增加,,醫(yī)療保健系統(tǒng)承擔(dān)的診斷和治療的相關(guān)成本,以及由于尿石癥的有害影響而造成的經(jīng)濟(jì)負(fù)擔(dān)[3],,[6],,[7]。 雖然尿石癥的負(fù)擔(dān)普遍增加,,但尿石癥的流行病學(xué),,因全球不同地區(qū)而異[8],。尿石癥病例的社會(huì)成本因地區(qū)而異,但發(fā)病率和患病率的趨勢(shì)與經(jīng)濟(jì)發(fā)展,、肥胖率,、飲食、氣候變化和其他健康狀況的不平衡密切相關(guān),。因此,,測(cè)量和有效解決尿石癥的負(fù)擔(dān),需要一種文化和地理上適應(yīng)的方法,。描述這種不同負(fù)擔(dān)的全球和國(guó)家估計(jì)和評(píng)價(jià)很少,值得對(duì)尿石癥的發(fā)病率,、殘疾負(fù)擔(dān)和死亡率進(jìn)行全面的全球比較[9],,[10]。 2019年全球疾病負(fù)擔(dān)(GBD)研究對(duì)204個(gè)國(guó)家和地區(qū)以及21個(gè)地區(qū)1990年至2019年期間369種疾病和傷害的發(fā)病率,、患病率和死亡率的已發(fā)表和公開(kāi)證據(jù)進(jìn)行了系統(tǒng)評(píng)估[11],。然而,以前沒(méi)有專門(mén)使用GBD研究數(shù)據(jù)突出和分析尿石癥趨勢(shì)和發(fā)病率的分析,。本研究使用GBD研究提供的尿石癥疾病負(fù)擔(dān)估計(jì)值,,旨在描述和分析1990年至2019年尿石癥的全球,區(qū)域和國(guó)家流行病學(xué)趨勢(shì)和疾病負(fù)擔(dān),,以便更好地了解和解決未來(lái)的尿石癥負(fù)擔(dān),。 2. 患者和方法關(guān)于每10萬(wàn)人的年齡標(biāo)準(zhǔn)化發(fā)病率(ASIR)、根據(jù)殘疾生活年數(shù)和喪失生命年數(shù)的加法估計(jì)的傷殘調(diào)整壽命年(DALYs)的年齡標(biāo)準(zhǔn)化發(fā)生率(ASR)的數(shù)據(jù),,以及歸因于尿石癥的這些措施的總數(shù),,可從公開(kāi)可用的全球衛(wèi)生數(shù)據(jù)交換(GHDx)查詢工具獲得[12]。這些措施被認(rèn)為是了解與疾病發(fā)生和負(fù)擔(dān)相關(guān)的趨勢(shì)的客觀指標(biāo),。GBD研究提供了369種疾病和傷害的發(fā)病率,,患病率,DALYs和其他健康指標(biāo)的估計(jì)值,。GBD研究的詳細(xì)方法在之前已經(jīng)描述過(guò)[11],,[13],[14],。GBD關(guān)于尿石癥研究的數(shù)據(jù)是從國(guó)家和國(guó)際醫(yī)院索賠和門(mén)診患者數(shù)據(jù),,尸檢數(shù)據(jù)和系統(tǒng)文獻(xiàn)綜述的重要登記處收集的。使用貝葉斯元回歸建模工具DisMod-MR 2.1計(jì)算按年齡,,性別,,年份和國(guó)家/地區(qū)進(jìn)行的估計(jì),以保持一致性[15],。 提取了21個(gè)地區(qū)(包括204個(gè)國(guó)家和地區(qū))1990年至2019年所有年齡段的病例數(shù)據(jù)和這些尿石癥措施的年度ASR,。在全球和區(qū)域兩級(jí)對(duì)數(shù)據(jù)進(jìn)行了分析,并通過(guò)社會(huì)人口指數(shù)(SDI)進(jìn)行了分層,該指數(shù)基于人均國(guó)民收入,,成年人平均受教育年限和總生育率,,以評(píng)估地理和社會(huì)經(jīng)濟(jì)趨勢(shì)。 平均年百分比變化(AAPC)是在全球,、區(qū)域和國(guó)家各級(jí)計(jì)算的,,作為發(fā)病率、殘疾調(diào)整年和死亡ASR趨勢(shì)的匯總統(tǒng)計(jì)數(shù)據(jù),。AAPC是一個(gè)單一數(shù)字,,通過(guò)使用年度百分比變化的加權(quán)平均值來(lái)描述人群中的疾病發(fā)生[16]。為了計(jì)算AAPC,,使用Joinpoint趨勢(shì)分析軟件來(lái)估計(jì)一個(gè)基礎(chǔ)模型,,該模型最適合每個(gè)區(qū)域的尿石癥ASR。每個(gè)區(qū)間的 AAPC 計(jì)算為基礎(chǔ) Joinpoint 線性回歸線斜率的加權(quán)平均值,。然后,,將坡度的加權(quán)平均值轉(zhuǎn)換為年度百分比變化。Joinpoint為每個(gè)國(guó)家開(kāi)發(fā)了一個(gè)模型,,該模型結(jié)合了不同數(shù)量的線性回歸的最佳擬合y = b0 + b1x + c,,使得y = ln(ASR)和x = 日歷年。然后,,AAPC 報(bào)告為 100 × [exp(b1) – 1],,其各自的 95% 置信區(qū)間 (CI) [17]。然后使用廣義加性建模來(lái)演示2019年國(guó)家AAPC與SDI的關(guān)系,,SDI被用作當(dāng)前國(guó)家社會(huì)經(jīng)濟(jì)概況的替代物,,以及1990年的ASR,以比較基線ASR對(duì)研究期間變化的影響,。廣義加性建模廣泛用于健康中的時(shí)間序列數(shù)據(jù),,并允許將非線性關(guān)系合并到線性模型框架[18],[19],,[20]中,。還計(jì)算了皮爾遜的相關(guān)系數(shù)和p值,以確定關(guān)系的方向性和顯著性,。顯著性確定在p<0.05水平,。使用 R(R 統(tǒng)計(jì)計(jì)算基金會(huì),奧地利維也納)和 Joinpoint 趨勢(shì)分析軟件(馬里蘭州貝塞斯達(dá)國(guó)家癌癥研究所)執(zhí)行統(tǒng)計(jì)分析,,而數(shù)據(jù)可視化在 R(R 統(tǒng)計(jì)計(jì)算基金會(huì))和 Tableau 軟件(Tableau Software,,華盛頓州西雅圖)中執(zhí)行。GBD研究遵循人口健康研究的準(zhǔn)確和透明健康估計(jì)報(bào)告指南(GATHER),。本研究使用來(lái)自GHDx查詢工具的公開(kāi)數(shù)據(jù),,沒(méi)有個(gè)人標(biāo)識(shí)符,并被認(rèn)為不受托萊多大學(xué)機(jī)構(gòu)審查委員會(huì)的審查,。 3. 結(jié)果尿石癥的當(dāng)前負(fù)擔(dān)2019年,,全球發(fā)生了115 552 140例尿石癥(95% CI [93 045 130.4–140 180 402.4])病例,其中604 308.9例歸因于DALYs(95% CI [477 353.5–745 193.9])和13 278.9例死亡(95% CI [10 616.0–16 267.4])(補(bǔ)充表1和2),。2019年所有發(fā)病病例中,,超過(guò)五分之一發(fā)生在印度(25 291 358.9;95% CI [19 882 953.8–31 444 662.0]),其次是在中國(guó)(17 684 919.0;95% CI [14 099 066.0–21 623 473.7])和俄羅斯聯(lián)邦(9 060 658.47;95% CI [7 277 388.1–11 110 813.1]),。尿石癥導(dǎo)致的傷殘調(diào)整壽命年總數(shù)的分布情況與印度相似,,其次是中國(guó)和俄羅斯聯(lián)邦,其后是負(fù)擔(dān)最高,,而中國(guó)的死亡比例最高,,其次是印度和俄羅斯聯(lián)邦。 在檢查每10萬(wàn)人的ASRs時(shí),,2019年尿石癥的全球ASIR為1394(95%CI,1126.4-1688.2;表1),,發(fā)病率最高的是俄羅斯聯(lián)邦(4541.9;95% CI [3648.9–5522.0]),,其次是烏克蘭(4282.6;95% CI [3,377.6–5271.8])和拉脫維亞(4156.7;95% CI [3404.7–5049.0]),,而最低的發(fā)生率發(fā)生在布隆迪(525.01;95% CI [408.4–646.9]),,其次是南蘇丹(533.4;95% CI [416.2–657.5])。2019年,,DALYs每10萬(wàn)人口中ASR最高的是亞美尼亞(33.3;95% CI [21.7–61.3]),,其次是俄羅斯聯(lián)邦(24.7;95% CI [19.7–30.6]),而DALY的最低ASR發(fā)生在佛得角(2.3;95% CI [1.5–3.2]),。尿石癥導(dǎo)致的死亡ASR通常低于每10萬(wàn)人1例,,只有亞美尼亞超過(guò)這一標(biāo)記(1.8;95% CI [0.9–4.0)])。 表 1.1990 年和 2019 年全球以及 SDI 五分之一地區(qū)和 21 個(gè) GBD 地區(qū)的尿石癥事件,、ASIR 和 AAPC
AAPC = 平均每年百分比變化;ASIR = 年齡標(biāo)準(zhǔn)化發(fā)病率;CI = 置信區(qū)間;GBD = 2019年全球疾病負(fù)擔(dān)研究;SDI = 社會(huì)人口指數(shù)。 發(fā)病率趨勢(shì)圖4 1990年至2019年204個(gè)國(guó)家尿石癥發(fā)病率AAPC,。AAPC=年平均百分比變化,。 當(dāng)用SDI五分位數(shù)分析時(shí),中高SDI(?1.3;95%CI [?1.3,,?1.2])在研究期間顯示出最大的下降,,其次是中間SDI(?0.8;95%CI [?1.1,?0.5])和高SDI(?0.6;95%CI [?0.8,,?0.5]),。低SDI仍然停滯不前(0;95%CI [?0.1,0]),,而中低SDI在研究期間顯示出唯一顯著的正增長(zhǎng)(0.1;95%CI [0,,0.3];表 1)。在21個(gè)GBD地區(qū)中,,東亞(?2.0;95% CI [?2.2, ?1.8])在研究期間的下降幅度最大,,其次是高收入的北美(?1.7;95% CI [?1.8,, ?1.6])和中歐(?1.7;95% CI [?1.8, ?1.6]),。加勒比地區(qū)(0.6; 95% CI [0.5,, 0.6])在研究期間顯示出最大的AAPC,其次是南亞(0.5; 95% CI [0.4,,0.6])和安第斯拉丁美洲(0.4;95% CI [0.3,, 0.4];表 1)。AAPC與1990年的ASIR(R = ?0.38,,p = 0.000)以及2019年的SDI(R = ?0.22,,p = 0.002;圖 5A). 死亡人數(shù)的變化4. 討論5. 結(jié)論總之,,自1990年以來(lái),,全球尿石癥導(dǎo)致的病例總數(shù)、傷殘調(diào)整壽命年和死亡總數(shù)有所增加,,而這些措施的平均退休率有所下降,。重要的是,低SDI國(guó)家的ASIR正在增加,。由于尿石癥造成了巨大的疾病負(fù)擔(dān),,因此有必要制定全球和國(guó)家戰(zhàn)略,預(yù)防和治療尿石癥,。本研究中分析和介紹的有關(guān)發(fā)病率,、死亡和傷殘調(diào)整壽命年(DALYs)的分布和趨勢(shì)有助于為政策提供信息,以更好地滿足未來(lái)國(guó)家的具體需求,。 References [1] I. Sorokin, C. Mamoulakis, K. Miyazawa, A. Rodgers, J. Talati, Y. Lotan Epidemiology of stone disease across the world World J Urol, 35 (2017), pp. 1301-1320 View PDF CrossRefView Record in ScopusGoogle Scholar [2] C.D. Scales, A.C. Smith, J.M. Hanley, C.S. Saigal Prevalence of kidney stones in the United States Eur Urol, 62 (2012), pp. 160-165 ArticleDownload PDFGoogle Scholar [3] A. Trinchieri Epidemiology of urolithiasis: an update Clin Cases Miner Bone Metab, 5 (2008), pp. 101-106 View Record in ScopusGoogle Scholar [4] F. Ba?tu?, Z. Gündüz, S. Tülpar, H. Poyrazo?lu, R. Dü?ünsel Urolithiasis in infants: evaluation of risk factors World J Urol, 31 (2013), pp. 1117-1122 View PDF CrossRefView Record in ScopusGoogle Scholar [5] S. Shin, A. Srivastava, N.A. Alli, B.C. Bandyopadhyay Confounding risk factors and preventative measures driving nephrolithiasis global makeup World J Nephrol, 7 (2018), pp. 129-142 View PDF CrossRefView Record in ScopusGoogle Scholar [6] T. Knoll Epidemiology, pathogenesis, and pathophysiology of urolithiasis Eur Urol Suppl, 9 (2010), pp. 802-806 ArticleDownload PDFView Record in ScopusGoogle Scholar [7] E.S. Hyams, B.R. Matlaga Economic impact of urinary stones Transl Androl Urol, 3 (2014), pp. 278-283 View Record in ScopusGoogle Scholar [8] C. Seitz, H. Fajkovic Epidemiological gender-specific aspects in urolithiasis World J Urol, 31 (2013), pp. 1087-1092 View PDF CrossRefView Record in ScopusGoogle Scholar [9] J.B. Ziemba, B.R. Matlaga Epidemiology and economics of nephrolithiasis Investig Clin Urol, 58 (2017), pp. 299-306 View PDF CrossRefView Record in ScopusGoogle Scholar [10] O.A. Raheem, Y.S. Khandwala, R.L. Sur, K.R. Ghani, J.D. Denstedt Burden of urolithiasis: trends in prevalence, treatments, and costs Eur Urol Focus, 3 (2017), pp. 18-26 ArticleDownload PDFView Record in ScopusGoogle Scholar [11] C. Abbafati, K.M. Abbas, M. Abbasi-Kangevari, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019 Lancet, 396 (2020), pp. 1204-1222 View PDF View Record in ScopusGoogle Scholar [12] Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) results. Seattle, WA: Institute for Health Metrics and Evaluation (IHME). http://ghdx./gbd-results-tool. Google Scholar [13] B. Bikbov, C.A. Purcell, A.S. Levey, et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017 Lancet, 395 (2020), pp. 709-733 View PDF View Record in ScopusGoogle Scholar [14] S.L. James, D. Abate, K.H. Abate, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017 Lancet, 392 (2018), pp. 1789-1858 Google Scholar [15] Institute for Health Metrics and Evaluation. Urolithiasis—level 4 cause. http://www./results/gbd_summaries/2019/urolithiasis-level-4-cause. Google Scholar [16] NIH, National Cancer Institute. Average annual percent change (AAPC) and confidence interval—Joinpoint Help System. https://surveillance./help/joinpoint/setting-parameters/method-and-parameters-tab/apc-aapc-tau-confidence-intervals/average-annual-percent-change-aapc. Google Scholar [17] Z. Zhai, Y. Zheng, N. Li, et al. Incidence and disease burden of prostate cancer from 1990 to 2017: results from the Global Burden of Disease Study 2017 Cancer, 126 (2020), pp. 1969-1978 View PDF CrossRefView Record in ScopusGoogle Scholar [18] I. Campbell Usefulness of generalized additive models Stat Methods Med Res, 5 (1996), pp. 331-332 View PDF CrossRefView Record in ScopusGoogle Scholar [19] T. Hastie, R. Tibshirani Generalized additive models for medical research Stat Methods Med Res, 4 (1995), pp. 187-196 View PDF CrossRefView Record in ScopusGoogle Scholar [20] K. Ravindra, P. Rattan, S. Mor, A.N. Aggarwal Generalized additive models: Building evidence of air pollution, climate change and human health Environ Int, 132 (2019), Article 104987 ArticleDownload PDFView Record in ScopusGoogle Scholar [21] S. Alatab, G. Pourmand, M.E.F. El Howairis, et al. National profiles of urinary calculi: a comparison between developing and developed worlds Iran J Kidney Dis, 10 (2016), pp. 51-61 View Record in ScopusGoogle Scholar [22] A.R. Omran The epidemiologic transition: a theory of the epidemiology of population change Milbank Q, 83 (2005), p. 731 View PDF CrossRefView Record in ScopusGoogle Scholar [23] A. Ramello, C. Vitale, M. Marangella Epidemiology of nephrolithiasis J Nephrol, 13 (Suppl 3) (2000), pp. S45-S50 View Record in ScopusGoogle Scholar [24] R. Johnson, L. Sánchez-Lozada, L. Newman, et al. Climate change and the kidney Ann Nutr Metab, 74 (Suppl 3) (2019), pp. 38-44 View PDF CrossRefView Record in ScopusGoogle Scholar [25] P.M. Ferraro, M. Bargagli, A. Trinchieri, G. Gambaro Risk of kidney stones: influence of dietary factors, dietary patterns, and vegetarian–vegan diets Nutrients, 12 (2020), p. 779 View PDF CrossRefView Record in ScopusGoogle Scholar [26] R. Geraghty, S. Proietti, O. Traxer, M. Archer, B. Somani Worldwide impact of warmer seasons on the incidence of renal colic and kidney stone disease: evidence from a systematic review of literature J Endourol, 31 (2017), pp. 729-735 View PDF CrossRefView Record in ScopusGoogle Scholar [27] Lovegrove C, Geraghty R, Yang B, et al. Natural history of small asymptomatic kidney and residual stones over a long-term follow-up: systematic review over 25 years. BJU Int. In press. https:///10.1111/BJU.15522. Google Scholar [28] W. Kittanamongkolchai, K. Mara, R. Mehta, et al. Risk of hypertension among first-time symptomatic kidney stone formers Clin J Am Soc Nephrol, 12 (2017), pp. 476-482 View PDF View Record in ScopusGoogle Scholar [29] S. Chung, Y. Chen, H. Lin Increased risk of diabetes in patients with urinary calculi: a 5-year followup study J Urol, 186 (2011), pp. 1888-1893 ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar [30] R. Geraghty, P. Cook, P. Roderick, B. Somani Risk of metabolic syndrome in kidney stone formers: a comparative cohort study with a median follow-up of 19 years J Clin Med, 10 (2021), p. 978 View PDF CrossRefGoogle Scholar |
|
來(lái)自: 醫(yī)學(xué)鏡界 > 《待分類》