久久国产成人av_抖音国产毛片_a片网站免费观看_A片无码播放手机在线观看,色五月在线观看,亚洲精品m在线观看,女人自慰的免费网址,悠悠在线观看精品视频,一级日本片免费的,亚洲精品久,国产精品成人久久久久久久

分享

200多個(gè)最好的機(jī)器學(xué)習(xí),、NLP和Python教程資源

 新用戶0175WbuX 2022-02-01

  這篇文章包含了我目前為止找到的最好的教程內(nèi)容。這不是一張羅列了所有網(wǎng)上跟機(jī)器學(xué)習(xí)相關(guān)教程的清單——不然就太冗長(zhǎng)太重復(fù)了,。我這里并沒(méi)有包括那些質(zhì)量一般的內(nèi)容,。我的目標(biāo)是把能找到的最好的教程與機(jī)器學(xué)習(xí)和自然語(yǔ)言處理的延伸主題們連接到一起。

  

  我這里指的“教程”,,是指那些為了簡(jiǎn)潔地傳授一個(gè)概念而寫(xiě)的介紹性內(nèi)容,。我盡量避免了教科書(shū)里的章節(jié),因?yàn)樗鼈兒w了更廣的內(nèi)容,,或者是研究論文,,通常對(duì)于傳授概念來(lái)說(shuō)并不是很有幫助,。如果是那樣的話,為何不直接買(mǎi)書(shū)呢?當(dāng)你想要學(xué)習(xí)一個(gè)基本主題或者是想要獲得更多觀點(diǎn)的時(shí)候,,教程往往很有用,。

  我把這篇文章分為了四個(gè)部分:機(jī)器學(xué)習(xí),自然語(yǔ)言處理,,python和數(shù)學(xué),。在每個(gè)部分中我都列舉了一些主題,但是因?yàn)椴牧系臄?shù)量龐大,,我不可能涉及到每一個(gè)主題,。

  如果你發(fā)現(xiàn)到我遺漏了哪些好的教程,請(qǐng)告訴我!我盡量把每個(gè)主題下的教程控制在五個(gè)或者六個(gè),,如果超過(guò)了這個(gè)數(shù)字就難免會(huì)有重復(fù),。每一個(gè)鏈接都包含了與其他鏈接不同的材料,或使用了不同的方式表達(dá)信息(例如:使用代碼,,幻燈片和長(zhǎng)文),,或者是來(lái)自不同的角度。成都加米谷大數(shù)據(jù)培訓(xùn),,小班教學(xué),。

  機(jī)器學(xué)習(xí)

  Start Here with Machine Learning (machinelearningmastery)

  machinelearningmastery/start-here/

  Machine Learning is Fun! (medium/@ageitgey)

  medium/@ageitgey/machine-learning-is-fun-80ea3ec3c471

  Rules of Machine Learning: Best Practices for ML Engineering(martin.zinkevich)

  martin.zinkevich/rules_of_ml/rules_of_ml.pdf

  Machine Learning Crash Course: Part I, Part II, Part III (Machine Learning at Berkeley)

  ml.berkeley/blog/2022/11/06/tutorial-1/

  ml.berkeley/blog/2022/12/24/tutorial-2/

  ml.berkeley/blog/2022/02/04/tutorial-3/

  An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples (toptal)

  toptal/machine-learning/machine-learning-theory-an-introductory-primer

  A Gentle Guide to Machine Learning (monkeylearn)

  monkeylearn/blog/gentle-guide-to-machine-learning/

  Which machine learning algorithm should I use? (sas)

  blogs.sas/content/subconsciousmusings/2022/04/12/machine-learning-algorithm-use/

  The Machine Learning Primer (sas)

  sas/content/dam/SAS/en_us/doc/whitepaper1/machine-learning-primer-108796.pdf

  Machine Learning Tutorial for Beginners (kaggle/kanncaa1)

  kaggle/kanncaa1/machine-learning-tutorial-for-beginners

  200多個(gè)最好的機(jī)器學(xué)習(xí)、NLP和Python教程資源

  激活和損失函數(shù)

  Sigmoid neurons (neuralnetworksanddeeplearning)

  neuralnetworksanddeeplearning/chap1.html#sigmoid_neurons

  What is the role of the activation function in a neural network? (quora)

  quora/What-is-the-role-of-the-activation-function-in-a-neural-network

  Comprehensive list of activation functions in neural networks with pros/cons(stats.stackexchange)

  stats.stackexchange/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons

  Activation functions and it’s types-Which is better? (medium)

  medium/towards-data-science/activation-functions-and-its-types-which-is-better-a9a5310cc8f

  Making Sense of Logarithmic Loss (exegetic)

  exegetic/blog/2022/12/making-sense-logarithmic-loss/

  Loss Functions (Stanford CS231n)

  cs231n.github/neural-networks-2/#losses

  L1 vs. L2 Loss function (rishy.github.io)

  rishy.github/ml/2022/07/28/l1-vs-l2-loss/

  The cross-entropy cost function (neuralnetworksanddeeplearning)

  neuralnetworksanddeeplearning/chap3.html#the_cross-entropy_cost_function

  偏差

  Role of Bias in Neural Networks (stackoverflow)

  stackoverflow/questions/2480650/role-of-bias-in-neural-networks/2499936#2499936

  Bias Nodes in Neural Networks(makeyourownneuralnetwork.blogspot)

  makeyourownneuralnetwork.blogspot/2022/06/bias-nodes-in-neural-networks.html

  What is bias in artificial neural network? (quora)

  quora/What-is-bias-in-artificial-neural-network

  感知機(jī)

  Perceptrons (neuralnetworksanddeeplearning)

  neuralnetworksanddeeplearning/chap1.html#perceptrons

  The Perception (natureofcode)

  natureofcode/book/chapter-10-neural-networks/#chapter10_figure3

  Single-layer Neural Networks (Perceptrons) (dcu.ie)

  computing.dcu.ie/~humphrys/Notes/Neural/single.neural.html

  From Perceptrons to Deep Networks (toptal)

  toptal/machine-learning/an-introduction-to-deep-learning-from-perceptrons-to-deep-networks

  200多個(gè)最好的機(jī)器學(xué)習(xí),、NLP和Python教程資源

  回歸

  Introduction to linear regression analysis (duke.edu)

  people.duke/~rnau/regintro.htm

  Linear Regression (ufldl.stanford.edu)

  ufldl.stanford/tutorial/supervised/LinearRegression/

  Linear Regression (readthedocs.io)

  ml-cheatsheet.readthedocs/en/latest/linear_regression.html

  Logistic Regression (readthedocs.io)

  ml-cheatsheet.readthedocs/en/latest/logistic_regression.html

  Simple Linear Regression Tutorial for Machine Learning(machinelearningmastery)

  machinelearningmastery/simple-linear-regression-tutorial-for-machine-learning/

  Logistic Regression Tutorial for Machine Learning(machinelearningmastery)

  machinelearningmastery/logistic-regression-tutorial-for-machine-learning/

  Softmax Regression (ufldl.stanford.edu)

  ufldl.stanford/tutorial/supervised/SoftmaxRegression/

  梯度下降

  Learning with gradient descent (neuralnetworksanddeeplearning)

  neuralnetworksanddeeplearning/chap1.html#learning_with_gradient_descent

  Gradient Descent (iamtrask.github.io)

  iamtrask.github/2022/07/27/python-network-part2/

  How to understand Gradient Descent algorithm (kdnuggets)

  kdnuggets/2022/04/simple-understand-gradient-descent-algorithm.html

  An overview of gradient descent optimization algorithms(sebastianruder)

  sebastianruder/optimizing-gradient-descent/

  Optimization: Stochastic Gradient Descent (Stanford CS231n)

  cs231n.github/optimization-1/

  生成學(xué)習(xí)

  Generative Learning Algorithms (Stanford CS229)

  cs229.stanford/notes/cs229-notes2.pdf

  A practical explanation of a Naive Bayes classifier (monkeylearn)

  monkeylearn/blog/practical-explanation-naive-bayes-classifier/

  200多個(gè)最好的機(jī)器學(xué)習(xí),、NLP和Python教程資源

  支持向量機(jī)

  An introduction to Support Vector Machines (SVM) (monkeylearn)

  monkeylearn/blog/introduction-to-support-vector-machines-svm/

  Support Vector Machines (Stanford CS229)

  cs229.stanford/notes/cs229-notes3.pdf

  Linear classification: Support Vector Machine, Softmax (Stanford 231n)

  cs231n.github/linear-classify/

  深度學(xué)習(xí)

  A Guide to Deep Learning by YN2 (yerevann)

  yerevann/a-guide-to-deep-learning/

  Deep Learning Papers Reading Roadmap (github/floodsung)

  github/floodsung/Deep-Learning-Papers-Reading-Roadmap

  Deep Learning in a Nutshell (nikhilbuduma)

  nikhilbuduma/2014/12/29/deep-learning-in-a-nutshell/

  A Tutorial on Deep Learning (Quoc V. Le)

  ai.stanford/~quocle/tutorial1.pdf

  What is Deep Learning? (machinelearningmastery)

  machinelearningmastery/what-is-deep-learning/

  What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning? (nvidia)

  blogs.nvidia/blog/2022/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

  Deep Learning?—?The Straight Dope (gluon.mxnet.io)

  gluon.mxnet/

  優(yōu)化和降維

  Seven Techniques for Data Dimensionality Reduction (knime)

  knime/blog/seven-techniques-for-data-dimensionality-reduction

  Principal components analysis (Stanford CS229)

  cs229.stanford/notes/cs229-notes10.pdf

  Dropout: A simple way to improve neural networks (Hinton @ NIPS 2012)

  cs229.stanford/notes/cs229-notes10.pdf

  How to train your Deep Neural Network (rishy.github.io)

  rishy.github/ml/2022/01/05/how-to-train-your-dnn/

  200多個(gè)最好的機(jī)器學(xué)習(xí)、NLP和Python教程資源

  長(zhǎng)短期記憶(LSTM)

  A Gentle Introduction to Long Short-Term Memory Networks by the Experts(machinelearningmastery)

  machinelearningmastery/gentle-introduction-long-short-term-memory-networks-experts/

  Understanding LSTM Networks (colah.github.io)

  colah.github/posts/2022-08-Understanding-LSTMs/

  Exploring LSTMs (echen.me)

  blog.echen/2022/05/30/exploring-lstms/

  Anyone Can Learn To Code an LSTM-RNN in Python (iamtrask.github.io)

  iamtrask.github/2022/11/15/anyone-can-code-lstm/

  卷積神經(jīng)網(wǎng)絡(luò)

  Introducing convolutional networks (neuralnetworksanddeeplearning)

  neuralnetworksanddeeplearning/chap6.html#introducing_convolutional_networks

  Deep Learning and Convolutional Neural Networks(medium/@ageitgey)

  medium/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721

  Conv Nets: A Modular Perspective (colah.github.io)

  colah.github/posts/2014-07-Conv-Nets-Modular/

  Understanding Convolutions (colah.github.io)

  colah.github/posts/2014-07-Understanding-Convolutions/

  遞歸神經(jīng)網(wǎng)絡(luò)

  Recurrent Neural Networks Tutorial (wildml)

  wildml/2022/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

  Attention and Augmented Recurrent Neural Networks (distill)

  distill/2022/augmented-rnns/

  The Unreasonable Effectiveness of Recurrent Neural Networks(karpathy.github.io)

  karpathy.github/2022/05/21/rnn-effectiveness/

  A Deep Dive into Recurrent Neural Nets (nikhilbuduma)

  nikhilbuduma/2022/01/11/a-deep-dive-into-recurrent-neural-networks/

  強(qiáng)化學(xué)習(xí)

  Simple Beginner’s guide to Reinforcement Learning & its implementation(analyticsvidhya)

  analyticsvidhya/blog/2022/01/introduction-to-reinforcement-learning-implementation/

  A Tutorial for Reinforcement Learning (mst.edu)

  web.mst/~gosavia/tutorial.pdf

  Learning Reinforcement Learning (wildml)

  wildml/2022/10/learning-reinforcement-learning/

  Deep Reinforcement Learning: Pong from Pixels (karpathy.github.io)

  karpathy.github/2022/05/31/rl/

  200多個(gè)最好的機(jī)器學(xué)習(xí),、NLP和Python教程資源

  生成對(duì)抗網(wǎng)絡(luò)(GANs)

  Adversarial Machine Learning (aaai18adversarial.github.io)

  aaai18adversarial.github/slides/AML.pptx

  What’s a Generative Adversarial Network? (nvidia)

  blogs.nvidia/blog/2022/05/17/generative-adversarial-network/

  Abusing Generative Adversarial Networks to Make 8-bit Pixel Art(medium/@ageitgey)

  medium/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

  An introduction to Generative Adversarial Networks (with code in TensorFlow) (aylien)

  blog.aylien/introduction-generative-adversarial-networks-code-tensorflow/

  Generative Adversarial Networks for Beginners (oreilly)

  oreilly/learning/generative-adversarial-networks-for-beginners

  多任務(wù)學(xué)習(xí)

  An Overview of Multi-Task Learning in Deep Neural Networks(sebastianruder)

  sebastianruder/multi-task/index.html

  自然語(yǔ)言處理

  Natural Language Processing is Fun! (medium/@ageitgey)

  medium/@ageitgey/natural-language-processing-is-fun-9a0bff37854e

  A Primer on Neural Network Models for Natural Language Processing(Yoav Goldberg)

  u.cs.biu.ac.il/~yogo/nnlp.pdf

  The Definitive Guide to Natural Language Processing (monkeylearn)

  monkeylearn/blog/the-definitive-guide-to-natural-language-processing/

  Introduction to Natural Language Processing (algorithmia)

  blog.algorithmia/introduction-natural-language-processing-nlp/

  Natural Language Processing Tutorial (vikparuchuri)

  vikparuchuri/blog/natural-language-processing-tutorial/

  Natural Language Processing (almost) from Scratch (arxiv)

  arxiv/pdf/1103.0398.pdf

  深度學(xué)習(xí)和學(xué)歷證自然語(yǔ)言處理

  Deep Learning applied to NLP (arxiv)

  arxiv/pdf/1703.03091.pdf

  Deep Learning for NLP (without Magic) (Richard Socher)

  nlp.stanford/courses/NAACL2013/NAACL2013-Socher-Manning-DeepLearning.pdf

  Understanding Convolutional Neural Networks for NLP (wildml)

  wildml/2022/11/understanding-convolutional-neural-networks-for-nlp/

  Deep Learning, NLP, and Representations (colah.github.io)

  colah.github/posts/2014-07-NLP-RNNs-Representations/

  Embed, encode, attend, predict: The new deep learning formula for state-of-the-art NLP models (explosion.ai)

  explosion.ai/blog/deep-learning-formula-nlp

  Understanding Natural Language with Deep Neural Networks Using Torch(nvidia)

  devblogs.nvidia/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/

  Deep Learning for NLP with Pytorch (pytorich)

  pytorch/tutorials/beginner/deep_learning_nlp_tutorial.html

  200多個(gè)最好的機(jī)器學(xué)習(xí),、NLP和Python教程資源

  詞向量

  Bag of Words Meets Bags of Popcorn (kaggle)

  kaggle/c/word2vec-nlp-tutorial

  On word embeddings Part I, Part II, Part III (sebastianruder)

  sebastianruder/word-embeddings-1/index.html

  sebastianruder/word-embeddings-softmax/index.html

  sebastianruder/secret-word2vec/index.html

  The amazing power of word vectors (acolyer)

  blog.acolyer/2022/04/21/the-amazing-power-of-word-vectors/

  word2vec Parameter Learning Explained (arxiv)

  arxiv/pdf/1411.2738.pdf

  Word2Vec Tutorial?—?The Skip-Gram Model, Negative Sampling(mccormickml)

  mccormickml/2022/04/19/word2vec-tutorial-the-skip-gram-model/

  mccormickml/2022/01/11/word2vec-tutorial-part-2-negative-sampling/

  編碼器-解碼器

  Attention and Memory in Deep Learning and NLP (wildml)

  wildml/2022/01/attention-and-memory-in-deep-learning-and-nlp/

  Sequence to Sequence Models (tensorflow)

  tensorflow/tutorials/seq2seq

  Sequence to Sequence Learning with Neural Networks (NIPS 2014)

  papers.nips/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

  Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences (medium/@ageitgey)

  medium/@ageitgey/machine-learning-is-fun-part-5-language-translation-with-deep-learning-and-the-magic-of-sequences-2ace0acca0aa

  tf-seq2seq (google.github.io)

  google.github/seq2seq/

  Python

  Machine Learning Crash Course (google)

  developers.google/machine-learning/crash-course/

  Awesome Machine Learning (github/josephmisiti)

  github/josephmisiti/awesome-machine-learning#python

  7 Steps to Mastering Machine Learning With Python (kdnuggets)

  kdnuggets/2022/11/seven-steps-machine-learning-python.html

  An example machine learning notebook (nbviewer.jupyter)

  nbviewer.jupyter/github/rhiever/Data-Analysis-and-Machine-Learning-Projects/blob/master/example-data-science-notebook/Example%20Machine%20Learning%20Notebook.ipynb

  Machine Learning with Python (tutorialspoint)

  tutorialspoint/machine_learning_with_python/machine_learning_with_python_quick_guide.htm

  范例

  How To Implement The Perceptron Algorithm From Scratch In Python(machinelearningmastery)

  machinelearningmastery/implement-perceptron-algorithm-scratch-python/

  Implementing a Neural Network from Scratch in Python (wildml)

  wildml/2022/09/implementing-a-neural-network-from-scratch/

  A Neural Network in 11 lines of Python (iamtrask.github.io)

  iamtrask.github/2022/07/12/basic-python-network/

  Implementing Your Own k-Nearest Neighbour Algorithm Using Python(kdnuggets)

  kdnuggets/2022/01/implementing-your-own-knn-using-python.html

  ML from Scatch (github/eriklindernoren)

  github/eriklindernoren/ML-From-Scratch

  Python Machine Learning (2nd Ed.) Code Repository (github/rasbt)

  github/rasbt/python-machine-learning-book-2nd-edition

  200多個(gè)最好的機(jī)器學(xué)習(xí),、NLP和Python教程資源

  Scipy and numpy

  Scipy Lecture Notes (scipy-lectures)

  scipy-lectures/

  Python Numpy Tutorial (Stanford CS231n)

  cs231n.github/python-numpy-tutorial/

  An introduction to Numpy and Scipy (UCSB CHE210D)

  engineering.ucsb/~shell/che210d/numpy.pdf

  A Crash Course in Python for Scientists (nbviewer.jupyter)

  nbviewer.jupyter/gist/rpmuller/5920222#ii.-numpy-and-scipy

  scikit-learn

  PyCon scikit-learn Tutorial Index (nbviewer.jupyter)

  nbviewer.jupyter/github/jakevdp/sklearn_pycon2022/blob/master/notebooks/Index.ipynb

  scikit-learn Classification Algorithms (github/mmmayo13)

  github/mmmayo13/scikit-learn-classifiers/blob/master/sklearn-classifiers-tutorial.ipynb

  scikit-learn Tutorials (scikit-learn)

  scikit-learn/stable/tutorial/index.html

  Abridged scikit-learn Tutorials (github/mmmayo13)

  github/mmmayo13/scikit-learn-beginners-tutorials

  Tensorflow

  Tensorflow Tutorials (tensorflow)

  tensorflow/tutorials/

  Introduction to TensorFlow?—?CPU vs GPU (medium/@erikhallstrm)

  medium/@erikhallstrm/hello-world-tensorflow-649b15aed18c

  TensorFlow: A primer (metaflow.fr)

  blog.metaflow.fr/tensorflow-a-primer-4b3fa0978be3

  RNNs in Tensorflow (wildml)

  wildml/2022/08/rnns-in-tensorflow-a-practical-guide-and-undocumented-features/

  Implementing a CNN for Text Classification in TensorFlow (wildml)

  wildml/2022/12/implementing-a-cnn-for-text-classification-in-tensorflow/

  How to Run Text Summarization with TensorFlow (surmenok)

  pavel.surmenok/2022/10/15/how-to-run-text-summarization-with-tensorflow/

  PyTorch

  PyTorch Tutorials (pytorch)

  pytorch/tutorials/

  A Gentle Intro to PyTorch (gaurav)

  blog.gaurav/2022/04/24/a-gentle-intro-to-pytorch/

  Tutorial: Deep Learning in PyTorch (iamtrask.github.io)

  iamtrask.github/2022/01/15/pytorch-tutorial/

  PyTorch Examples (github/jcjohnson)

  github/jcjohnson/pytorch-examples

  PyTorch Tutorial (github/MorvanZhou)

  github/MorvanZhou/PyTorch-Tutorial

  PyTorch Tutorial for Deep Learning Researchers (github/yunjey)

  github/yunjey/pytorch-tutorial

  200多個(gè)最好的機(jī)器學(xué)習(xí),、NLP和Python教程資源

  數(shù)學(xué)

  Math for Machine Learning (ucsc.edu)

  people.ucsc/~praman1/static/pub/math-for-ml.pdf

  Math for Machine Learning (UMIACS CMSC422)

  umiacs.umd/~hal/courses/2013S_ML/math4ml.pdf

  線性代數(shù)

  An Intuitive Guide to Linear Algebra (betterexplained)

  betterexplained/articles/linear-algebra-guide/

  A Programmer’s Intuition for Matrix Multiplication (betterexplained)

  betterexplained/articles/matrix-multiplication/

  Understanding the Cross Product (betterexplained)

  betterexplained/articles/cross-product/

  Understanding the Dot Product (betterexplained)

  betterexplained/articles/vector-calculus-understanding-the-dot-product/

  Linear Algebra for Machine Learning (U. of Buffalo CSE574)

  cedar.buffalo/~srihari/CSE574/Chap1/LinearAlgebra.pdf

  Linear algebra cheat sheet for deep learning (medium)

  medium/towards-data-science/linear-algebra-cheat-sheet-for-deep-learning-cd67aba4526c

  Linear Algebra Review and Reference (Stanford CS229)

  cs229.stanford/section/cs229-linalg.pdf

  概率

  Understanding Bayes Theorem With Ratios (betterexplained)

  betterexplained/articles/understanding-bayes-theorem-with-ratios/

  Review of Probability Theory (Stanford CS229)

  cs229.stanford/section/cs229-prob.pdf

  Probability Theory Review for Machine Learning (Stanford CS229)

  see.stanford/materials/aimlcs229/cs229-prob.pdf

  Probability Theory (U. of Buffalo CSE574)

  cedar.buffalo/~srihari/CSE574/Chap1/Probability-Theory.pdf

  Probability Theory for Machine Learning (U. of Toronto CSC411)

  cs.toronto/~urtasun/courses/CSC411_Fall16/tutorial1.pdf

  微積分

  How To Understand Derivatives: The Quotient Rule, Exponents, and Logarithms (betterexplained)

  betterexplained/articles/how-to-understand-derivatives-the-quotient-rule-exponents-and-logarithms/

  How To Understand Derivatives: The Product, Power & Chain Rules(betterexplained)

  betterexplained/articles/derivatives-product-power-chain/

  Vector Calculus: Understanding the Gradient (betterexplained)

  betterexplained/articles/vector-calculus-understanding-the-gradient/

  Differential Calculus (Stanford CS224n)

  web.stanford/class/cs224n/lecture_notes/cs224n-2022-review-differential-calculus.pdf

  Calculus Overview (readthedocs.io)

  ml-cheatsheet.readthedocs/en/latest/calculus.html

    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類(lèi)似文章 更多