這篇文章包含了我目前為止找到的最好的教程內(nèi)容。這不是一張羅列了所有網(wǎng)上跟機(jī)器學(xué)習(xí)相關(guān)教程的清單——不然就太冗長(zhǎng)太重復(fù)了,。我這里并沒(méi)有包括那些質(zhì)量一般的內(nèi)容,。我的目標(biāo)是把能找到的最好的教程與機(jī)器學(xué)習(xí)和自然語(yǔ)言處理的延伸主題們連接到一起。
我這里指的“教程”,,是指那些為了簡(jiǎn)潔地傳授一個(gè)概念而寫(xiě)的介紹性內(nèi)容,。我盡量避免了教科書(shū)里的章節(jié),因?yàn)樗鼈兒w了更廣的內(nèi)容,,或者是研究論文,,通常對(duì)于傳授概念來(lái)說(shuō)并不是很有幫助,。如果是那樣的話,為何不直接買(mǎi)書(shū)呢?當(dāng)你想要學(xué)習(xí)一個(gè)基本主題或者是想要獲得更多觀點(diǎn)的時(shí)候,,教程往往很有用,。 我把這篇文章分為了四個(gè)部分:機(jī)器學(xué)習(xí),自然語(yǔ)言處理,,python和數(shù)學(xué),。在每個(gè)部分中我都列舉了一些主題,但是因?yàn)椴牧系臄?shù)量龐大,,我不可能涉及到每一個(gè)主題,。 如果你發(fā)現(xiàn)到我遺漏了哪些好的教程,請(qǐng)告訴我!我盡量把每個(gè)主題下的教程控制在五個(gè)或者六個(gè),,如果超過(guò)了這個(gè)數(shù)字就難免會(huì)有重復(fù),。每一個(gè)鏈接都包含了與其他鏈接不同的材料,或使用了不同的方式表達(dá)信息(例如:使用代碼,,幻燈片和長(zhǎng)文),,或者是來(lái)自不同的角度。成都加米谷大數(shù)據(jù)培訓(xùn),,小班教學(xué),。 機(jī)器學(xué)習(xí) Start Here with Machine Learning (machinelearningmastery) machinelearningmastery/start-here/ Machine Learning is Fun! (medium/@ageitgey) medium/@ageitgey/machine-learning-is-fun-80ea3ec3c471 Rules of Machine Learning: Best Practices for ML Engineering(martin.zinkevich) martin.zinkevich/rules_of_ml/rules_of_ml.pdf Machine Learning Crash Course: Part I, Part II, Part III (Machine Learning at Berkeley) ml.berkeley/blog/2022/11/06/tutorial-1/ ml.berkeley/blog/2022/12/24/tutorial-2/ ml.berkeley/blog/2022/02/04/tutorial-3/ An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples (toptal) toptal/machine-learning/machine-learning-theory-an-introductory-primer A Gentle Guide to Machine Learning (monkeylearn) monkeylearn/blog/gentle-guide-to-machine-learning/ Which machine learning algorithm should I use? (sas) blogs.sas/content/subconsciousmusings/2022/04/12/machine-learning-algorithm-use/ The Machine Learning Primer (sas) sas/content/dam/SAS/en_us/doc/whitepaper1/machine-learning-primer-108796.pdf Machine Learning Tutorial for Beginners (kaggle/kanncaa1) kaggle/kanncaa1/machine-learning-tutorial-for-beginners
激活和損失函數(shù) Sigmoid neurons (neuralnetworksanddeeplearning) neuralnetworksanddeeplearning/chap1.html#sigmoid_neurons What is the role of the activation function in a neural network? (quora) quora/What-is-the-role-of-the-activation-function-in-a-neural-network Comprehensive list of activation functions in neural networks with pros/cons(stats.stackexchange) stats.stackexchange/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons Activation functions and it’s types-Which is better? (medium) medium/towards-data-science/activation-functions-and-its-types-which-is-better-a9a5310cc8f Making Sense of Logarithmic Loss (exegetic) exegetic/blog/2022/12/making-sense-logarithmic-loss/ Loss Functions (Stanford CS231n) cs231n.github/neural-networks-2/#losses L1 vs. L2 Loss function (rishy.github.io) rishy.github/ml/2022/07/28/l1-vs-l2-loss/ The cross-entropy cost function (neuralnetworksanddeeplearning) neuralnetworksanddeeplearning/chap3.html#the_cross-entropy_cost_function 偏差 Role of Bias in Neural Networks (stackoverflow) stackoverflow/questions/2480650/role-of-bias-in-neural-networks/2499936#2499936 Bias Nodes in Neural Networks(makeyourownneuralnetwork.blogspot) makeyourownneuralnetwork.blogspot/2022/06/bias-nodes-in-neural-networks.html What is bias in artificial neural network? (quora) quora/What-is-bias-in-artificial-neural-network 感知機(jī) Perceptrons (neuralnetworksanddeeplearning) neuralnetworksanddeeplearning/chap1.html#perceptrons The Perception (natureofcode) natureofcode/book/chapter-10-neural-networks/#chapter10_figure3 Single-layer Neural Networks (Perceptrons) (dcu.ie) computing.dcu.ie/~humphrys/Notes/Neural/single.neural.html From Perceptrons to Deep Networks (toptal) toptal/machine-learning/an-introduction-to-deep-learning-from-perceptrons-to-deep-networks
回歸 Introduction to linear regression analysis (duke.edu) people.duke/~rnau/regintro.htm Linear Regression (ufldl.stanford.edu) ufldl.stanford/tutorial/supervised/LinearRegression/ Linear Regression (readthedocs.io) ml-cheatsheet.readthedocs/en/latest/linear_regression.html Logistic Regression (readthedocs.io) ml-cheatsheet.readthedocs/en/latest/logistic_regression.html Simple Linear Regression Tutorial for Machine Learning(machinelearningmastery) machinelearningmastery/simple-linear-regression-tutorial-for-machine-learning/ Logistic Regression Tutorial for Machine Learning(machinelearningmastery) machinelearningmastery/logistic-regression-tutorial-for-machine-learning/ Softmax Regression (ufldl.stanford.edu) ufldl.stanford/tutorial/supervised/SoftmaxRegression/ 梯度下降 Learning with gradient descent (neuralnetworksanddeeplearning) neuralnetworksanddeeplearning/chap1.html#learning_with_gradient_descent Gradient Descent (iamtrask.github.io) iamtrask.github/2022/07/27/python-network-part2/ How to understand Gradient Descent algorithm (kdnuggets) kdnuggets/2022/04/simple-understand-gradient-descent-algorithm.html An overview of gradient descent optimization algorithms(sebastianruder) sebastianruder/optimizing-gradient-descent/ Optimization: Stochastic Gradient Descent (Stanford CS231n) cs231n.github/optimization-1/ 生成學(xué)習(xí) Generative Learning Algorithms (Stanford CS229) cs229.stanford/notes/cs229-notes2.pdf A practical explanation of a Naive Bayes classifier (monkeylearn) monkeylearn/blog/practical-explanation-naive-bayes-classifier/
支持向量機(jī) An introduction to Support Vector Machines (SVM) (monkeylearn) monkeylearn/blog/introduction-to-support-vector-machines-svm/ Support Vector Machines (Stanford CS229) cs229.stanford/notes/cs229-notes3.pdf Linear classification: Support Vector Machine, Softmax (Stanford 231n) cs231n.github/linear-classify/ 深度學(xué)習(xí) A Guide to Deep Learning by YN2 (yerevann) yerevann/a-guide-to-deep-learning/ Deep Learning Papers Reading Roadmap (github/floodsung) github/floodsung/Deep-Learning-Papers-Reading-Roadmap Deep Learning in a Nutshell (nikhilbuduma) nikhilbuduma/2014/12/29/deep-learning-in-a-nutshell/ A Tutorial on Deep Learning (Quoc V. Le) ai.stanford/~quocle/tutorial1.pdf What is Deep Learning? (machinelearningmastery) machinelearningmastery/what-is-deep-learning/ What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning? (nvidia) blogs.nvidia/blog/2022/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/ Deep Learning?—?The Straight Dope (gluon.mxnet.io) gluon.mxnet/ 優(yōu)化和降維 Seven Techniques for Data Dimensionality Reduction (knime) knime/blog/seven-techniques-for-data-dimensionality-reduction Principal components analysis (Stanford CS229) cs229.stanford/notes/cs229-notes10.pdf Dropout: A simple way to improve neural networks (Hinton @ NIPS 2012) cs229.stanford/notes/cs229-notes10.pdf How to train your Deep Neural Network (rishy.github.io) rishy.github/ml/2022/01/05/how-to-train-your-dnn/
長(zhǎng)短期記憶(LSTM) A Gentle Introduction to Long Short-Term Memory Networks by the Experts(machinelearningmastery) machinelearningmastery/gentle-introduction-long-short-term-memory-networks-experts/ Understanding LSTM Networks (colah.github.io) colah.github/posts/2022-08-Understanding-LSTMs/ Exploring LSTMs (echen.me) blog.echen/2022/05/30/exploring-lstms/ Anyone Can Learn To Code an LSTM-RNN in Python (iamtrask.github.io) iamtrask.github/2022/11/15/anyone-can-code-lstm/ 卷積神經(jīng)網(wǎng)絡(luò) Introducing convolutional networks (neuralnetworksanddeeplearning) neuralnetworksanddeeplearning/chap6.html#introducing_convolutional_networks Deep Learning and Convolutional Neural Networks(medium/@ageitgey) medium/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721 Conv Nets: A Modular Perspective (colah.github.io) colah.github/posts/2014-07-Conv-Nets-Modular/ Understanding Convolutions (colah.github.io) colah.github/posts/2014-07-Understanding-Convolutions/ 遞歸神經(jīng)網(wǎng)絡(luò) Recurrent Neural Networks Tutorial (wildml) wildml/2022/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/ Attention and Augmented Recurrent Neural Networks (distill) distill/2022/augmented-rnns/ The Unreasonable Effectiveness of Recurrent Neural Networks(karpathy.github.io) karpathy.github/2022/05/21/rnn-effectiveness/ A Deep Dive into Recurrent Neural Nets (nikhilbuduma) nikhilbuduma/2022/01/11/a-deep-dive-into-recurrent-neural-networks/ 強(qiáng)化學(xué)習(xí) Simple Beginner’s guide to Reinforcement Learning & its implementation(analyticsvidhya) analyticsvidhya/blog/2022/01/introduction-to-reinforcement-learning-implementation/ A Tutorial for Reinforcement Learning (mst.edu) web.mst/~gosavia/tutorial.pdf Learning Reinforcement Learning (wildml) wildml/2022/10/learning-reinforcement-learning/ Deep Reinforcement Learning: Pong from Pixels (karpathy.github.io) karpathy.github/2022/05/31/rl/
生成對(duì)抗網(wǎng)絡(luò)(GANs) Adversarial Machine Learning (aaai18adversarial.github.io) aaai18adversarial.github/slides/AML.pptx What’s a Generative Adversarial Network? (nvidia) blogs.nvidia/blog/2022/05/17/generative-adversarial-network/ Abusing Generative Adversarial Networks to Make 8-bit Pixel Art(medium/@ageitgey) medium/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7 An introduction to Generative Adversarial Networks (with code in TensorFlow) (aylien) blog.aylien/introduction-generative-adversarial-networks-code-tensorflow/ Generative Adversarial Networks for Beginners (oreilly) oreilly/learning/generative-adversarial-networks-for-beginners 多任務(wù)學(xué)習(xí) An Overview of Multi-Task Learning in Deep Neural Networks(sebastianruder) sebastianruder/multi-task/index.html 自然語(yǔ)言處理 Natural Language Processing is Fun! (medium/@ageitgey) medium/@ageitgey/natural-language-processing-is-fun-9a0bff37854e A Primer on Neural Network Models for Natural Language Processing(Yoav Goldberg) u.cs.biu.ac.il/~yogo/nnlp.pdf The Definitive Guide to Natural Language Processing (monkeylearn) monkeylearn/blog/the-definitive-guide-to-natural-language-processing/ Introduction to Natural Language Processing (algorithmia) blog.algorithmia/introduction-natural-language-processing-nlp/ Natural Language Processing Tutorial (vikparuchuri) vikparuchuri/blog/natural-language-processing-tutorial/ Natural Language Processing (almost) from Scratch (arxiv) arxiv/pdf/1103.0398.pdf 深度學(xué)習(xí)和學(xué)歷證自然語(yǔ)言處理 Deep Learning applied to NLP (arxiv) arxiv/pdf/1703.03091.pdf Deep Learning for NLP (without Magic) (Richard Socher) nlp.stanford/courses/NAACL2013/NAACL2013-Socher-Manning-DeepLearning.pdf Understanding Convolutional Neural Networks for NLP (wildml) wildml/2022/11/understanding-convolutional-neural-networks-for-nlp/ Deep Learning, NLP, and Representations (colah.github.io) colah.github/posts/2014-07-NLP-RNNs-Representations/ Embed, encode, attend, predict: The new deep learning formula for state-of-the-art NLP models (explosion.ai) explosion.ai/blog/deep-learning-formula-nlp Understanding Natural Language with Deep Neural Networks Using Torch(nvidia) devblogs.nvidia/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/ Deep Learning for NLP with Pytorch (pytorich) pytorch/tutorials/beginner/deep_learning_nlp_tutorial.html
詞向量 Bag of Words Meets Bags of Popcorn (kaggle) kaggle/c/word2vec-nlp-tutorial On word embeddings Part I, Part II, Part III (sebastianruder) sebastianruder/word-embeddings-1/index.html sebastianruder/word-embeddings-softmax/index.html sebastianruder/secret-word2vec/index.html The amazing power of word vectors (acolyer) blog.acolyer/2022/04/21/the-amazing-power-of-word-vectors/ word2vec Parameter Learning Explained (arxiv) arxiv/pdf/1411.2738.pdf Word2Vec Tutorial?—?The Skip-Gram Model, Negative Sampling(mccormickml) mccormickml/2022/04/19/word2vec-tutorial-the-skip-gram-model/ mccormickml/2022/01/11/word2vec-tutorial-part-2-negative-sampling/ 編碼器-解碼器 Attention and Memory in Deep Learning and NLP (wildml) wildml/2022/01/attention-and-memory-in-deep-learning-and-nlp/ Sequence to Sequence Models (tensorflow) tensorflow/tutorials/seq2seq Sequence to Sequence Learning with Neural Networks (NIPS 2014) papers.nips/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences (medium/@ageitgey) medium/@ageitgey/machine-learning-is-fun-part-5-language-translation-with-deep-learning-and-the-magic-of-sequences-2ace0acca0aa tf-seq2seq (google.github.io) google.github/seq2seq/ Python Machine Learning Crash Course (google) developers.google/machine-learning/crash-course/ Awesome Machine Learning (github/josephmisiti) github/josephmisiti/awesome-machine-learning#python 7 Steps to Mastering Machine Learning With Python (kdnuggets) kdnuggets/2022/11/seven-steps-machine-learning-python.html An example machine learning notebook (nbviewer.jupyter) nbviewer.jupyter/github/rhiever/Data-Analysis-and-Machine-Learning-Projects/blob/master/example-data-science-notebook/Example%20Machine%20Learning%20Notebook.ipynb Machine Learning with Python (tutorialspoint) tutorialspoint/machine_learning_with_python/machine_learning_with_python_quick_guide.htm 范例 How To Implement The Perceptron Algorithm From Scratch In Python(machinelearningmastery) machinelearningmastery/implement-perceptron-algorithm-scratch-python/ Implementing a Neural Network from Scratch in Python (wildml) wildml/2022/09/implementing-a-neural-network-from-scratch/ A Neural Network in 11 lines of Python (iamtrask.github.io) iamtrask.github/2022/07/12/basic-python-network/ Implementing Your Own k-Nearest Neighbour Algorithm Using Python(kdnuggets) kdnuggets/2022/01/implementing-your-own-knn-using-python.html ML from Scatch (github/eriklindernoren) github/eriklindernoren/ML-From-Scratch Python Machine Learning (2nd Ed.) Code Repository (github/rasbt) github/rasbt/python-machine-learning-book-2nd-edition
Scipy and numpy Scipy Lecture Notes (scipy-lectures) scipy-lectures/ Python Numpy Tutorial (Stanford CS231n) cs231n.github/python-numpy-tutorial/ An introduction to Numpy and Scipy (UCSB CHE210D) engineering.ucsb/~shell/che210d/numpy.pdf A Crash Course in Python for Scientists (nbviewer.jupyter) nbviewer.jupyter/gist/rpmuller/5920222#ii.-numpy-and-scipy scikit-learn PyCon scikit-learn Tutorial Index (nbviewer.jupyter) nbviewer.jupyter/github/jakevdp/sklearn_pycon2022/blob/master/notebooks/Index.ipynb scikit-learn Classification Algorithms (github/mmmayo13) github/mmmayo13/scikit-learn-classifiers/blob/master/sklearn-classifiers-tutorial.ipynb scikit-learn Tutorials (scikit-learn) scikit-learn/stable/tutorial/index.html Abridged scikit-learn Tutorials (github/mmmayo13) github/mmmayo13/scikit-learn-beginners-tutorials Tensorflow Tensorflow Tutorials (tensorflow) tensorflow/tutorials/ Introduction to TensorFlow?—?CPU vs GPU (medium/@erikhallstrm) medium/@erikhallstrm/hello-world-tensorflow-649b15aed18c TensorFlow: A primer (metaflow.fr) blog.metaflow.fr/tensorflow-a-primer-4b3fa0978be3 RNNs in Tensorflow (wildml) wildml/2022/08/rnns-in-tensorflow-a-practical-guide-and-undocumented-features/ Implementing a CNN for Text Classification in TensorFlow (wildml) wildml/2022/12/implementing-a-cnn-for-text-classification-in-tensorflow/ How to Run Text Summarization with TensorFlow (surmenok) pavel.surmenok/2022/10/15/how-to-run-text-summarization-with-tensorflow/ PyTorch PyTorch Tutorials (pytorch) pytorch/tutorials/ A Gentle Intro to PyTorch (gaurav) blog.gaurav/2022/04/24/a-gentle-intro-to-pytorch/ Tutorial: Deep Learning in PyTorch (iamtrask.github.io) iamtrask.github/2022/01/15/pytorch-tutorial/ PyTorch Examples (github/jcjohnson) github/jcjohnson/pytorch-examples PyTorch Tutorial (github/MorvanZhou) github/MorvanZhou/PyTorch-Tutorial PyTorch Tutorial for Deep Learning Researchers (github/yunjey) github/yunjey/pytorch-tutorial
數(shù)學(xué) Math for Machine Learning (ucsc.edu) people.ucsc/~praman1/static/pub/math-for-ml.pdf Math for Machine Learning (UMIACS CMSC422) umiacs.umd/~hal/courses/2013S_ML/math4ml.pdf 線性代數(shù) An Intuitive Guide to Linear Algebra (betterexplained) betterexplained/articles/linear-algebra-guide/ A Programmer’s Intuition for Matrix Multiplication (betterexplained) betterexplained/articles/matrix-multiplication/ Understanding the Cross Product (betterexplained) betterexplained/articles/cross-product/ Understanding the Dot Product (betterexplained) betterexplained/articles/vector-calculus-understanding-the-dot-product/ Linear Algebra for Machine Learning (U. of Buffalo CSE574) cedar.buffalo/~srihari/CSE574/Chap1/LinearAlgebra.pdf Linear algebra cheat sheet for deep learning (medium) medium/towards-data-science/linear-algebra-cheat-sheet-for-deep-learning-cd67aba4526c Linear Algebra Review and Reference (Stanford CS229) cs229.stanford/section/cs229-linalg.pdf 概率 Understanding Bayes Theorem With Ratios (betterexplained) betterexplained/articles/understanding-bayes-theorem-with-ratios/ Review of Probability Theory (Stanford CS229) cs229.stanford/section/cs229-prob.pdf Probability Theory Review for Machine Learning (Stanford CS229) see.stanford/materials/aimlcs229/cs229-prob.pdf Probability Theory (U. of Buffalo CSE574) cedar.buffalo/~srihari/CSE574/Chap1/Probability-Theory.pdf Probability Theory for Machine Learning (U. of Toronto CSC411) cs.toronto/~urtasun/courses/CSC411_Fall16/tutorial1.pdf 微積分 How To Understand Derivatives: The Quotient Rule, Exponents, and Logarithms (betterexplained) betterexplained/articles/how-to-understand-derivatives-the-quotient-rule-exponents-and-logarithms/ How To Understand Derivatives: The Product, Power & Chain Rules(betterexplained) betterexplained/articles/derivatives-product-power-chain/ Vector Calculus: Understanding the Gradient (betterexplained) betterexplained/articles/vector-calculus-understanding-the-gradient/ Differential Calculus (Stanford CS224n) web.stanford/class/cs224n/lecture_notes/cs224n-2022-review-differential-calculus.pdf Calculus Overview (readthedocs.io) ml-cheatsheet.readthedocs/en/latest/calculus.html |
|
來(lái)自: 新用戶0175WbuX > 《待分類(lèi)》