今天在單位加班做測試(泥煤的我怎么老加班?。。,。?,測試最近做的東西的耗電情況如何。 這方面比較悲劇的是,,為了可以得到不被干擾的數(shù)值,,每次測試都是把手機的電充滿,然后干跑二十分鐘,。于是算上充電的時間,,折騰一次至少半小時沒了。 于是就想到,,這次回學(xué)校,,見到不少學(xué)弟,其中有一個學(xué)霸類型的學(xué)弟問了我老板一個問題,,關(guān)于量子場論中的場的,。 大意就是說,薛定諤方程用的是哈密頓算法,,而路徑積分的作用量用的是拉氏量而非哈密頓量,,同時我們又知道拉氏量和哈密頓量并不總能一一對應(yīng)(有拉氏量必然可以通過變換得到哈密頓量,但對于非保守體系這反過來的過程就不一定能做到了),,那這里是否會有問題,? 這個問題最后導(dǎo)師給的回答其實和原問題沒啥關(guān)系,主要集中在什么是正則量子化什么是路徑積分量子化這個更一般性的問題上,。 于是我就在想了——你看,,開場白這么大一串終于引出正式的廢話了——場這貨到底是什么? 正好我寫簡書這么久了,還從來沒扯過我的專業(yè),,所以這2014年第一篇簡書就扯扯我的專業(yè)吧,。 首先,,我們需要明白一下,,現(xiàn)代物理大概是什么樣的。 有一個耳熟能詳?shù)墓适乱恢痹诿耖g流傳,,那就是現(xiàn)代物理是在老物理大廈上空的兩朵烏云上建立起來的,。這兩朵烏云最終一個導(dǎo)致了相對論,一個引出了量子論,。 現(xiàn)代物理的兩個核心,,就是這兩貨。 但,,烏云之所以是烏云,,最關(guān)鍵的要素就是——它夠烏,。 于是乎,,物理發(fā)展到了現(xiàn)在,這兩朵烏云依然可以說在那里烏青著——相對論和量子論至今還沒有徹底揉合在一起,。 這么說其實并不能算全OK,,這要看你怎么說相對論和量子論了。 比如說吧,,我們?nèi)绻驹谧钤嫉南鄬φ摰慕嵌?,即所謂的狹義相對論的角度,那么相對論和量子論已經(jīng)算是融合了的,,那就是“相對論性量子力學(xué)”和“量子場論”,,這兩貨都是狹義相對論和量子理論的雜交品。 那為什么還說這兩朵烏云沒有完全融合呢,?怪就怪在這“狹義”兩字上——既然有狹義,,那么當(dāng)然有廣義了。從英文原文的角度來說,,狹義相對論是“特殊化相對性理論”,,而廣義相對論是“一般化相對性原理”,所以光看名字就知道光有狹義相對論和量子理論的融合這不算個事,。 問題就來了,,這廣義相對論很不安分。 廣義和狹義的基本區(qū)別,,在于:狹義相對論說的是時空整體總能和一個我們所熟悉的閔科夫斯基時空對應(yīng),,而不管觀測者怎么運動,而廣義相對論則說,哪怕只從時空的某個局部點來看,,也是如此,。 說得物理一點,就是狹義相對論認(rèn)為,,物理規(guī)律在(平直的)時空整體上總是各向同性的,,而廣義相對論則認(rèn)為即便在任意時空上,微觀上也是如此,。 這兩個之所以有這么一種看似很蛋疼的區(qū)別,,就在于狹義相對論還沒開始考慮引力,而廣義相對論考慮了,。 從狹義到廣義的思想再進(jìn)一步,,就是所謂的規(guī)范場思想了——不但在時空上如此,在內(nèi)秉空間也是如此,。 這太抽了,,等下再說。 說場的意義為什么要先說相對論,?因為相對論開啟了一個物理哲學(xué)上全新的綱領(lǐng)——幾何綱領(lǐng),。而場綱領(lǐng)是幾何綱領(lǐng)的自然延續(xù)。 PS:所謂綱領(lǐng),,就和后來量子理論中的各種詮釋一樣,,是你理解物理理論與物理觀念的一套概念體系。 在幾何綱領(lǐng)之前,,力這個概念本身和幾何是一點關(guān)系都沒有的,。力就是力,比如電力通過電力線來表示,,磁力通過磁力線來表示,,它們的傳遞和作用都看作是一種抽象的存在——通過可以被具象化的力線,我們清楚地“看到”了力的傳播和作用,。這就是幾何綱領(lǐng)之前的力的圖景,。 從廣義相對論開始,一個新的思維被引入了——力可以不是這么抽象的存在,,而是某種物理實在的幾何表現(xiàn)——比如說,,時空作為一個物理實在,它的形變形成了引力——而這形變就是一種幾何屬性,。 因此,,幾何綱領(lǐng)的主要內(nèi)涵,就是說,,相互作用可以被表述為物理實在的幾何屬性,。比如說,,規(guī)范場論和廣義相對論,都是這么一種思路,。 但,,即便是幾何綱領(lǐng)也分強弱兩個版本,強幾何綱領(lǐng)認(rèn)為時空是幾何的,,而弱幾何綱領(lǐng)則認(rèn)為時空是時空,,幾何只是正好描述了時空。這里的差距可以自己感受一下,。 我們跳躍一下,,這里就可以穿插正文之前的廢話中所提到的對場的理解了——場是物理實在還是物理描述,?如果場是物理實在,,那么狄拉克方程和克萊茵方程就給出了這個物理實在的形態(tài);而如果場是物理描述,,那么狄拉克方程和克萊茵方程所給出的其實只是真正的物理——粒子——的量子描述——幾率波,。這兩個觀點中的物理實在不同,所以許多細(xì)節(jié)的理解就會變得很不一樣,。比如在后一個觀點上我們才能說二次量子化,,在前一個觀點中場還是經(jīng)典產(chǎn)物,哪來的“第二次”量子化,?場論只是對經(jīng)典場的一次直接量子化而已,。 然后再閃回到相對論中。 幾何綱領(lǐng)進(jìn)一步發(fā)展,,就是后來的場綱領(lǐng),。 就如前面所說,廣義相對論將狹義相對論的原理從平直時空推廣到了任意幾何形態(tài)的時空,,從而也將結(jié)論從時空整體變成了在時空局部成立,。 按照這個思路再進(jìn)一步,我們就可以得到規(guī)范的思想——這最早就是Weyl在廣義相對論上所作的,。我們認(rèn)為一個屬性在時空局部上的變化應(yīng)該依然是滿足物理的,,于是Weyl將標(biāo)度變換作為一個規(guī)范元素,得到了Weyl不變量和Weyl張量等等,。但這個思想在廣義相對論上沒發(fā)展下去,,因為實在沒看出有什么苗頭,但這個想法卻在量子場論中得到了發(fā)展,。 好,,我們現(xiàn)在就穿越到兩朵烏云的另一朵上了。 什么是量子場論,? 量子理論是一個很宏大的框架,,而且,由于歷史上的原因,量子顧名思義就被理解為是“一份一份”的,。 比如,,能量是一份一份的,動量是一份一份的,,粒子所在位置是一份份的,,電荷也是一份份的。這就是最初展現(xiàn)給我們看到的量子——當(dāng)然,,人生若只如初見,,這總是美好的,但事實卻不是如此,。我們在以后會看到其實量子不一定是這種分立的,,反而可能是超連續(xù)的,比如路徑積分,。 量子理論的這一框架的主要思想,,被稱為量子化——但,很可惜,,我們其實不知道究竟什么是量子化,,我們只是知道怎么去做量子化。 就好比一個古代人手上拿著計算器,,不知道其原理,,但能用來計算1+1=2。 是為“知其然不知其所以然”也,。 量子理論的詮釋,,一如力的綱領(lǐng),有很多種,,歷史上最有名的(但未必是最正確的)就是哥本哈根詮釋,,將意識、觀測和量子態(tài)塌縮聯(lián)系在了一起,,這讓很多宗教人士浮想聯(lián)翩,,到今天依然在往這上面浮想,而不愿塵歸塵土歸土上帝的歸上帝凱撒的歸凱撒,。 量子論在發(fā)展的過程中,,有一道坎是繞不過去的,那就是相對論所預(yù)言的相對論效應(yīng),。 為了解決這個問題,,我們在傳統(tǒng)量子理論的基礎(chǔ)上發(fā)展出了相對論性量子力學(xué)——就是將量子理論結(jié)合了狹義相對論而搞出來的(作為對比,廣義相對論吸收了量子場論也搞了一個東西,,不過是半成品,,就是彎曲時空的量子場論,,這貨我看到有民科把玩過,饒是驚人),。 相對論性量子力學(xué)還不是量子場論,,雖然他們具有驚人相似的外表(也就是數(shù)學(xué))。 大家最熟悉的,,就是為了能得到相對論效應(yīng)情況下的哈密頓量,,兩個人從不同的角度出發(fā),得到了兩個著名的公式——從等式左右平方一下玩玩出發(fā),,我們得到了克萊茵方程,;從把根號硬開出來折騰出發(fā),我們得到了狄拉克方程——由此可見,,狄拉克的數(shù)學(xué)功底就是牛,。 這里,這兩個方程,,連同最早我們所接觸的薛定諤方程(別誤會,,薛定諤方程是一大類方程的通稱,,狄拉克方程和克萊茵方程也屬于薛定諤方程的一種,。這里所說的“最早接觸的薛定諤方程”是說歷史上最早被推演出來的那個方程),計算中所用到的場算符的物理意義都是相同的,,那就是描述粒子的量子幾率幅的幾率波,,換言之本身都沒有物理意義,而只有描述物理實在的數(shù)學(xué)意義,。 緊接著,,我們發(fā)現(xiàn)光有這樣的薛定諤方程(注意上面的括號所說的內(nèi)容)還沒有用,我們無法描述粒子被創(chuàng)造或者消失掉的過程,,因此,,在傳統(tǒng)量子力學(xué)所熟悉的粒子數(shù)表象或者說Fock表象的基礎(chǔ)上,我們將其與相對論性量子力學(xué)結(jié)合,,就有了所謂的“二次量子化”,,描述粒子的波函數(shù)本身可以被產(chǎn)生湮滅算符所作用,也被量子化了,。到這里,,我們就得到了最終版的粒子量子化理論。 當(dāng)然,,我們知道經(jīng)典物理中也是有場的,,并不只有幾率幅這種東西。 經(jīng)典物理中的場是什么,?那就是電磁場——在量子理論發(fā)展的早期,,我們也只知道電磁場是場,。本來說不定會認(rèn)為有電磁場和光場,但電磁力學(xué)統(tǒng)一了兩者,。當(dāng)然,,引力場也是場,不過這不是相對論的天下么,? 既然我們可以研究電子的量子行為,,那我們自然會去研究電磁場的量子行為,于是經(jīng)過一連串的折騰,,我們鼓搗出了電動力學(xué)的量子形式,,也就是對電磁場的量子化。 有趣的事情就這么來了,。 我們發(fā)現(xiàn),,電磁場的形式真的是太好了,太和諧了,,以至于我們不得不去猜測長得非常接近的克萊茵方程中的那家伙是不是也是一個場,? 請注意,這是沒有什么深刻道理的猜測,,僅此而已,,只不過日后發(fā)現(xiàn)這么想似乎沒什么錯而已,和實驗符合得挺好,。 于是乎,,直到現(xiàn)在,量子場論才終于和“量子幾率幅”這個數(shù)學(xué)貨沒了關(guān)系,,自己具有了獨立的物理意義,,或者說成了物理上的客觀實在,成了本體論的主角,。 要注意,,既然現(xiàn)在我們說前面克萊茵方程、狄拉克方程中的波函數(shù)是和電磁場理論中的電磁場是一樣的場,,那就是說,,這些場都是經(jīng)典的東西——經(jīng)典的場。 在我們將場的作用量丟到路徑積分的指數(shù)位置上以前,,或者在我們將經(jīng)典泊松括號替換為量子泊松括號以前(這兩個方法分別就是路徑積分量子化和正則量子化),,場都是經(jīng)典的,不是量子的,。包括后面的規(guī)范場,,也是經(jīng)典的,不是量子的,。什么時候變量子了,?我們把規(guī)范場的作用量丟去路徑積分,,或者把泊松括號換個意義,好,,這回就從經(jīng)典規(guī)范場變成了量子規(guī)范場,。 可見,和相對論性量子力學(xué)截然不同,,場論中到這里為止的場和量子一點關(guān)系都沒有,。 于是,后來的量子化,,相對論性量子力學(xué)中是為了解決粒子的產(chǎn)生湮滅等動態(tài)問題,,而在場論中則只是簡單的場的量子化。于是前者被稱為“二次量子化”,,后者被稱為“場量子化”,。 有人會說,為什么場不用考慮“二次量子化”,?場被量子化以后怎么不用考慮產(chǎn)生湮滅問題,?這是因為,我們發(fā)現(xiàn)場的解中有各種解(經(jīng)典的),,而這些解可以組合出各種你所要的場,,因此場本身就包含了自身的出現(xiàn)和消失,不需要另行操作了,。 從綱領(lǐng)的角度來說,,相對論性量子力學(xué)肯定是談不上幾何綱領(lǐng)或者場綱領(lǐng)的,在它的世界體系中場純粹是數(shù)學(xué)道具,,不具有本體性和實在性——當(dāng)然,我們可以來看AB效應(yīng)和AC效應(yīng),,這里其實所謂的勢就是場,,不過是電磁場,因此在相對論性量子力學(xué)中我們必須精分地認(rèn)為,,電磁場的場是場,,電子的場是幾率波,不是場,。 而量子場論,,則無疑是繼承自幾何綱領(lǐng)的——不過在規(guī)范場論之前,我們倒不能這么嚴(yán)格地說它所遵從的就是幾何綱領(lǐng),,而只能說是幾何綱領(lǐng)的發(fā)展——場綱領(lǐng),。在這里,場具有了本地地位,,而且我們不需要精分地認(rèn)為何者為場何者非場,,一切都是場,。 接下來,就是從廣義相對論就出現(xiàn)的規(guī)范的思想引入量子場論的時刻了,。 量子場論說白了還是一個框架,,就和之前所說的量子力學(xué)一樣,只是一個框架,。 框架的好處就是青菜蘿卜都能往里扔,,但壞處就是如果你就是想吃雞蛋餅,那框架是不會直接給你雞蛋餅的,。 所以,,我們想用量子場論來處理電磁問題、核力問題,,以及各種別的問題,,但我們卻發(fā)現(xiàn)這組框架太宏大了,以至于我們壓根不知道怎么在這個籮筐里找到我們要吃的雞蛋餅,。 而就在這個時候,,規(guī)范場論出現(xiàn)了。 這貨還是一個經(jīng)典理論,,除非被量子化,。 規(guī)范場論是場論的子類,多出來的內(nèi)容是一類很有意思的限制,,而且這類限制可以被很好地用幾何語言描述出來,,那就是——內(nèi)秉空間的規(guī)范變換不改變物理。 不改變是一個很有用的概念,,術(shù)語一點就叫做不變性,。 比如,如果時空中每個位置的場都做相同的變換,,并且在這個變換下物理性質(zhì)不發(fā)生改變,,那我們就能得到物理上相關(guān)的守恒定律,比如大家熟悉的能量守恒,,對應(yīng)的就是時間平移不變性,;動量守恒,就是空間平移不變性,;角動量守恒,,就是空間旋轉(zhuǎn)不變性。 而規(guī)范不變性,,就是規(guī)范場論比量子場論多出來的那個東西,,則和上一段所說的不變性差別在于——這里只考慮局部。 比如,,全局時間平移不變是全局不變性,,那么在局部做一個時間平移如果也不變,,這就是規(guī)范不變性,由此得到的定律就是規(guī)范場的基本規(guī)律,。 在規(guī)范場論中,,這種規(guī)范不變性所作用的,就是各種內(nèi)秉空間,,比如說電磁學(xué)的內(nèi)秉空間就是U(1)群所描述的,。如果我們做內(nèi)秉空間的一個轉(zhuǎn)動,要求全局做相同的轉(zhuǎn)動物理不變,,那么就得到了電荷守恒(或者說U(1)群的力荷守恒),;如果要求全局做不同的轉(zhuǎn)動物理不變,也就是規(guī)范不變,,那我們就得到了電動力學(xué)中的電磁場作用量,,從而也就得到了電動力學(xué)。 好,,用通俗一點的話來說,。 我們可以想象這么一個時空,其中時空每個點上都有一個微型時空門,,通往一個個彼此獨立但完全相同的小宇宙,。這些小宇宙之間都有聯(lián)系,而規(guī)范不變性則等于是說:一個位置上的小宇宙發(fā)生了變化,,那么這種變化必然會改變這種聯(lián)系,,而這種聯(lián)系的改變又會反過來影響其所連接著的小宇宙,從而向外擴(kuò)散出去,。這小宇宙的性質(zhì)就是電荷,,而小宇宙之間的聯(lián)系就是勢場,這種聯(lián)系的分布性質(zhì)就是場強,。 而用幾何的話來說,,就是時空作為一個幾何體,同時也是更大的幾何體“纖維叢”的基底,。每個時空點上的“纖維”就是內(nèi)秉空間,而纖維叢的聯(lián)絡(luò)就是勢場,,纖維叢的曲率就是場強,。 或者,我們甚至可以用M理論的觀點來看——時空是11維的,,但只有4個維度是展開的,,7個維度是卷成一圈的。這卷成一圈的7個維度就可以看作是上面所說的纖維,,那么時空的彎曲就可以分解為展開維度的彎曲——引力,,和蜷縮維的彎曲——規(guī)范場,。這種彎曲在足夠小的時候,可以得到和纖維叢觀點一致的結(jié)論,,從而讓抽象的難以理解的數(shù)學(xué)名詞“纖維叢”被“翻譯”為容易直觀想象的極小的蜷縮維的幾何,。 這就是非常幾何的觀點了。 那么,,場綱領(lǐng)和幾何綱領(lǐng)到底有什么分別呢,? 我們并不能簡單地將場理解為某種特定的幾何客體,因為場綱領(lǐng)的場事實上還有更豐富的內(nèi)涵,。事實上,,場是這么一種物理實在,其代表了同一類對象的各種可能物理狀態(tài)的集合與分布,。因此,,場不僅僅是幾何的,更多是物理的,。也因此,,在場綱領(lǐng)中,幾何是描述的語言,,算是弱幾何綱領(lǐng)的思路,。但和相對論性量子力學(xué)的綱領(lǐng)要求不同,場綱領(lǐng)的場具有獨立的實在性,,而不是只是附庸,。 更進(jìn)一步,和量子場論中的場不同,,現(xiàn)在規(guī)范場論中的場都能找到幾何對應(yīng),,至少也是很明確的數(shù)學(xué)對應(yīng)。比如電磁場這樣的規(guī)范勢能場,,對應(yīng)的就是纖維叢的聯(lián)絡(luò),,而帶有規(guī)范力荷的粒子的場則是纖維叢對應(yīng)群的生成元(從規(guī)范場論來說,先是引入的群,,然后再賦予群一個幾何圖像纖維),,等等等等。 規(guī)范場論當(dāng)然也不是沒有問題的,。就如規(guī)范場論的出現(xiàn)是為了解決量子場論無法給出踏踏實實的物理的問題,,規(guī)范場論的發(fā)展也遇到了一個很糟糕的問題,就是規(guī)范場論要求規(guī)范場的媒介粒子(比如電磁場的媒介粒子就是光子)是無質(zhì)量的,,或者說其靜質(zhì)量必須為0,,而我們知道除了光子,強弱作用力的媒介粒子的靜質(zhì)量都不是0。 為了解決這個問題,,就引入了對稱性自發(fā)破缺和Higgs機制,。可見,,Higgs機制是規(guī)范場論的必然結(jié)果——而如果沒有Higgs機制,,規(guī)范場論就和現(xiàn)實一點關(guān)系沒有。我們?nèi)ツ暌呀?jīng)基本算是確定找到了Higgs粒子,,所以規(guī)范場論這一套基本算是被確認(rèn)了,。 可Higgs機制也只是解決了規(guī)范場論乃至量子場論諸多問題中的一個問題,剩下的問題只能說是路漫漫其修遠(yuǎn)兮,,吾將上下而求索,。 在對稱性自發(fā)破缺后,人們進(jìn)一步發(fā)散思維,,開始想這么一個問題——對稱性,,就是群嘛,規(guī)范場論的核心也是群嘛,,所以是否可能所有的力都其實是同一個群的,,然后這個群破缺了,產(chǎn)生了一系列的碎片,,這些碎片就是電磁力,、若相互作用力和強相互作用力。 這個思想就給出了大統(tǒng)一,,也即給出了標(biāo)準(zhǔn)模型——乃至最后包含引力的TOE,。 上面基本算是大致科普了一下整個脈絡(luò),介紹了一些綱領(lǐng)的基本想法,。 下面來扯一點扯淡的東西,。 比如說,在上面整個圖景中,,有一個很重要的問題還沒有解決,,那就是廣義相對論和規(guī)范場論目前沒法融合。 從數(shù)學(xué)的角度來說,,廣義相對論是流形聯(lián)絡(luò)的動力學(xué),,而規(guī)范場論是纖維叢聯(lián)絡(luò)的動力學(xué),后者的纖維叢的底流形是前者,。這兩者基本算是風(fēng)馬牛不相及的,。因此規(guī)范場論的框架不能作用于廣義相對論,而廣義相對論的框架也不能作用于規(guī)范場論,。更細(xì)致一點,廣義相對論探討的是外部對稱性,而規(guī)范場論則是內(nèi)部對稱性,。我們自然可以硬做,,將外部對稱性當(dāng)內(nèi)部對稱性來做(為什么不是反過來?因為規(guī)范場論我們知道如何量子化,,廣義相對論我們不知道如何量子化),,這就是局部彭加萊規(guī)范的規(guī)范場論。但這貨不是什么好東西,,60~70年代就有人研究過,,沒什么好的發(fā)展。不過近來暗物質(zhì)興起,,彭加萊規(guī)范說不定可以和暗物質(zhì)有聯(lián)系這也難講,。 另一條路,就是擴(kuò)大時空維度然后做緊致化,,比如歷史上的超引力就是如此,。將時空從4維拓展到5維后發(fā)現(xiàn)緊致化掉第五維得到的理論自然包含了麥克斯韋的電動力學(xué)(存在于被緊致化的蜷縮維中,而緊致化基本可以被視為將外部維度“縮”到纖維中,,從而將纖維和底流形,、內(nèi)部對稱性和外部對稱性聯(lián)系在了一起),于是大家很開心地將維度拓展為11維,,發(fā)現(xiàn)4個廣延維容納了廣義相對論,,7個蜷縮維容納了標(biāo)準(zhǔn)模型的規(guī)范場論。一切都很美好,,除了這樣算出來的荷質(zhì)比不對,。 再再另一方面,我們發(fā)現(xiàn)一些數(shù)學(xué)手段是可以將外部對稱性和內(nèi)部對稱性結(jié)合起來的,,比如大名如雷貫耳的超對稱,。超對稱不但可以結(jié)合外部對稱性和內(nèi)部對稱性,它還可以將費米子和玻色子統(tǒng)一起來,,使得從一個被超對稱作用一下就變到另一個,。更神奇的是,幾乎所有現(xiàn)實的量子場論都面臨的重整化與發(fā)散問題,,在超對稱作用下是可以得到緩解的(發(fā)散分紅外和紫外,,超對稱對紫外發(fā)散具有很好的修正)。再加上超對稱后的理論會有自旋2的無質(zhì)量粒子,,被人認(rèn)為是引力子,,于是就和弦論以及上面所說的拓展引力理論融合,得到了超弦和超引力,,并最終得到了M理論,。 只不過,,有這么一個問題——我們至今都沒證明超對稱的正確性。事實上,,LHC已經(jīng)基本證明了N=1的超對稱理論是錯誤的,。我們當(dāng)然可以找比最簡單的N=1復(fù)雜的N=2或者更高的理論,但在奧卡姆剃刀下我們一邊堅持極簡主義一邊放棄最簡的N=1,,這要么是物理學(xué)家很精分,,要么就是上帝很精分。 同樣的,,弦所預(yù)言的大尺度額外維也基本被槍斃了——我們只能在“不那么大”的大尺度下找額外維,,也就是提高LHC能級。 幾個振奮人心的東西里,,超對稱很尷尬,,大尺度被玩小了,大概也就全息原理還能堅挺,,但我們其實也只理論證明了AdS/CFT,,距離Grivity/Gauge還很遠(yuǎn)(最近看到有人發(fā)文說證明了某類特殊時空中的G/G全息對偶,這倒是很有意思),,而且這貨其實現(xiàn)在主要是凝聚態(tài)的人用來算東西的(思路就是這里算規(guī)范場太難了,?行,我們換到對偶的情況下算引力去,,一算,,嘿,真變?nèi)菀琢耍,。? 還有一些比這些都更基本的問題,,就是其實我們到目前也不知道什么是正則量子化。 我們知道正則量子化就是把玻色子的經(jīng)典泊松括號換成量子對易子關(guān)系,,或者把費米子的經(jīng)典泊松括號換成量子反對易子關(guān)系——這么做下來的結(jié)果基本總是對的,,但問題是我們并不知道我們?yōu)楹我@么來做。 就這點來說,,或許路徑積分更好一點,,因為它的意義至少比什么是正則量子化要來得明顯,但路徑積分從數(shù)學(xué)上來說卻是完全的一團(tuán)糟,,我們甚至寫不出一個通用的積分體元,,而Wick轉(zhuǎn)動也只是為了保證能算下去而做的胡搞,數(shù)學(xué)家看了吐槽不止,。 當(dāng)然了,,經(jīng)典泊松括號被視為傳統(tǒng)幾何空間(也就是傳統(tǒng)群的群流形)中運動(體系演化)所對應(yīng)的相空間,一個辛流形(算上時間的話就是切觸流形),,而有人提出量子化以后的情況其實對應(yīng)了量子群的群流形上體系演化的相空間,。但這個說法本身有點雞蛋問題循環(huán)論證的味道,,沒多大物理意義。 附帶一提,,F(xiàn)insler如果從經(jīng)典時空的彭加萊群的破缺的角度來看的話,,這種破缺給出的群的確和量子群有一定的關(guān)聯(lián),從而Finsler流形說不定和量子化背后的時空背景有一點點的聯(lián)系,。但這貨本身的邪惡程度實在是爆表,更何況真的做量子化以后,,時空流形本身的結(jié)構(gòu)已經(jīng)不是特別重要了,。 站在當(dāng)下的理論物理角度,其實上面這些問題都不是很重要,。 不知道什么是正則量子化這一個量子理論的基礎(chǔ)并不重要,,重要的是你計算出來的東西能和實驗對得上——不管你的計算在數(shù)學(xué)家看來多么充滿槽點。 所以,,我們可以看到,,無論是弦還是圈,現(xiàn)在基本都不談物理意義,。比如圈談物理談到Wilson圈就結(jié)束了,,但Wilson圈能算物理么?反正在我看來這還是數(shù)學(xué),。 實驗跟上來以前,,我們也的確只能談數(shù)學(xué),這倒也是沒辦法的事情,。 站在這個角度來說,,現(xiàn)代物理其實還是回到了盲人摸象的時代,只不過現(xiàn)在我們不是用手摸,,是用筆算,。 |
|