常用的插值方法 1,、最鄰近元法 這是最簡單的一種插值方法,不需要計算,,在待求象素的四鄰象素中,,將距離待求象素最近的鄰象素灰度賦給待求象素。設i+u, j+v(i, j為正整數(shù),, u, v為大于零小于1的小數(shù),,下同)為待求象素坐標,則待求象素灰度的值 f(i+u, j+v) 如下圖所示: 如果(i+u, j+v)落在A區(qū),,即u<0.5, v<0.5,,則將左上角象素的灰度值賦給待求象素,同理,,落在B區(qū)則賦予右上角的象素灰度值,,落在C區(qū)則賦予左下角象素的灰度值,落在D區(qū)則賦予右下角象素的灰度值,。 最鄰近元法計算量較小,,但可能會造成插值生成的圖像灰度上的不連續(xù),在灰度變化的地方可能出現(xiàn)明顯的鋸齒狀。 2,、雙線性內插法 雙線性內插法是利用待求象素四個鄰象素的灰度在兩個方向上作線性內插,,如下圖所示: 對于 (i, j+v),f(i, j) 到 f(i, j+1) 的灰度變化為線性關系,,則有: f(i, j+v) = [f(i, j+1) - f(i, j)] * v + f(i, j) 同理對于 (i+1, j+v) 則有: f(i+1, j+v) = [f(i+1, j+1) - f(i+1, j)] * v + f(i+1, j) 從f(i, j+v) 到 f(i+1, j+v) 的灰度變化也為線性關系,,由此可推導出待求象素灰度的計算式如下: f(i+u, j+v) = (1-u) * (1-v) * f(i, j) + (1-u) * v * f(i, j+1) + u * (1-v) * f(i+1, j) + u * v * f(i+1, j+1) 雙線性內插法的計算比最鄰近點法復雜,計算量較大,,但沒有灰度不連續(xù)的缺點,,結果基本令人滿意。它具有低通濾波性質,,使高頻分量受損,,圖像輪廓可能會有一點模糊。 3,、三次內插法 該方法利用三次多項式S(x)求逼近理論上最佳插值函數(shù)sin(x)/x, 其數(shù)學表達式為: 待求像素(x, y)的灰度值由其周圍16個灰度值加權內插得到,,如下圖: 待求像素的灰度計算式如下: f(x, y) = f(i+u, j+v) = ABC 其中: 三次曲線插值方法計算量較大,但插值后的圖像效果最好,。 插值方法總結: “Inverse Distance to a Power(反距離加權插值法)”,、 “Kriging(克里金插值法)”、 “Minimum Curvature(最小曲率)”,、 “Modified Shepard's Method(改進謝別德法)”,、 “Natural Neighbor(自然鄰點插值法)”、 “Nearest Neighbor(最近鄰點插值法)”,、 “Polynomial Regression(多元回歸法)”,、 “Radial Basis Function(徑向基函數(shù)法)”、 “Triangulation with Linear Interpolation(線性插值三角網(wǎng)法)”,、 “Moving Average(移動平均法)”,、 “Local Polynomial(局部多項式法)” 1、距離倒數(shù)乘方法 距離倒數(shù)乘方格網(wǎng)化方法是一個加權平均插值法,,可以進行確切的或者圓滑的方式插值。方次參數(shù)控制著權系數(shù)如何隨著離開一個格網(wǎng)結點距離的增加而下降,。對于一個較大的方次,,較近的數(shù)據(jù)點被給定一個較高的權重份額,對于一個較小的方次,,權重比較均勻地分配給各數(shù)據(jù)點,。 計算一個格網(wǎng)結點時給予一個特定數(shù)據(jù)點的權值與指定方次的從結點到觀測點的該結點被賦予距離倒數(shù)成比例。當計算一個格網(wǎng)結點時,,配給的權重是一個分數(shù),,所 有權重的總和等于1.0。當一個觀測點與一個格網(wǎng)結點重合時,該觀測點被給予一個實際為 1.0 的權重,,所有其它觀測點被給予一個幾乎為 0.0 的權重,。換言之,該結點被賦給與觀測點一致的值,。這就是一個準確插值,。 距離倒數(shù)法的特征之一是要在格網(wǎng)區(qū)域內產(chǎn)生圍繞觀測點位置的"牛眼"。用距離倒數(shù)格網(wǎng)化時可以指定一個圓滑參數(shù),。大于零的圓滑參數(shù)保證,,對于一個特定的結 點,沒有哪個觀測點被賦予全部的權值,,即使觀測點與該結點重合也是如此,。圓滑參數(shù)通過修勻已被插值的格網(wǎng)來降低"牛眼"影響。 2,、克里金法 克里金法是一種在許多領域都很有用的地質統(tǒng)計格網(wǎng)化方法,。克里金法試圖那樣表示隱含在你的數(shù)據(jù)中的趨勢,,例如,,高點會是沿一個脊連接,而不是被牛眼形等值線所孤立,。 克里金法中包含了幾個因子:變化圖模型,,漂移類型 和礦塊效應。 3,、最小曲率法 最小曲率法廣泛用于地球科學,。用最小曲率法生成的插值面類似于一個通過各個數(shù)據(jù)值的,具有最小彎曲量的長條形薄彈性片,。最小曲率法,,試圖在盡可能嚴格地尊重數(shù)據(jù)的同時,生成盡可能圓滑的曲面,。 使用最小曲率法時要涉及到兩個參數(shù):最大殘差參數(shù)和最大循環(huán)次數(shù)參數(shù)來控制最小曲率的收斂標準,。 4、多元回歸法 多元回歸被用來確定你的數(shù)據(jù)的大規(guī)模的趨勢和圖案,。你可以用幾個選項來確定你需要的趨勢面類型,。多元回歸實際上不是插值器,因為它并不試圖預測未知的 Z 值,。它實際上是一個趨勢面分析作圖程序,。 使用多元回歸法時要涉及到曲面定義和指定XY的最高方次設置,曲面定義是選擇采用的數(shù)據(jù)的多項式類型,,這些類型分別是簡單平面,、雙線性鞍、二次曲面、三次曲面和用戶定義的多項式,。參數(shù)設置是指定多項式方程中 X 和 Y組元的最高方次 ,。 5、徑向基本函數(shù)法 徑向基本函數(shù)法是多個數(shù)據(jù)插值方法的組合,。根據(jù)適應你的數(shù)據(jù)和生成一個圓滑曲面的能力,,其中的復二次函數(shù)被許多人認為是最好的方法。所有徑向基本函數(shù)法都 是準確的插值器,,它們都要為尊重你的數(shù)據(jù)而努力,。為了試圖生成一個更圓滑的曲面,對所有這些方法你都可以引入一個圓滑系數(shù),。你可以指定的函數(shù)類似于克里金 中的變化圖,。當對一個格網(wǎng)結點插值時,這些個函數(shù)給數(shù)據(jù)點規(guī)定了一套最佳權重,。 6,、謝別德法 謝別德法使用距離倒數(shù)加權的最小二乘方的方法。因此,,它與距離倒數(shù)乘方插值器相似,,但它利用了局部最小二乘方來消除或減少所生成等值線的"牛眼"外觀。謝別德法可以是一個準確或圓滑插值器,。 在用謝別德法作為格網(wǎng)化方法時要涉及到圓滑參數(shù)的設置,。圓滑參數(shù)是使謝別德法能夠象一個圓滑插值器那樣工作。當你增加圓滑參數(shù)的值時,,圓滑的效果越好,。 7、三角網(wǎng)/線形插值法 三角網(wǎng)插值器是一種嚴密的插值器,,它的工作路線與手工繪制等值線相近,。這種方法是通過在數(shù)據(jù)點之間連線以建立起若干個三角形來工作的。原始數(shù)據(jù)點的連結方法是這樣:所有三角形的邊都不能與另外的三角形相交,。其結果構成了一張覆蓋格網(wǎng)范圍的,,由三角形拼接起來的網(wǎng)。 每一個三角形定義了一個覆蓋該三角形內格網(wǎng)結點的面,。三角形的傾斜和標高由定義這個三角形的三個原始數(shù)據(jù)點確定,。給定三角形內的全部結點都要受到該三角形的表面的限制。因為原始數(shù)據(jù)點被用來定義各個三角形,,所以你的數(shù)據(jù)是很受到尊重的。 8.自然鄰點插值法 自然鄰點插值法(NaturalNeighbor)是Surfer7.0才有的網(wǎng)格化新方法,。自然鄰點插值法廣泛應用于一些研究領域中,。其基本原理是對于 一組泰森(Thiessen)多邊形,當在數(shù)據(jù)集中加入一個新的數(shù)據(jù)點(目標)時,就會修改這些泰森多邊形,而使用鄰點的權重平均值將決定待插點的權重, 待插點的權重和目標泰森多邊形成比例。實際上,在這些多邊形中,有一些多邊形的尺寸將縮小,并且沒有一個多邊形的大小會增加。同時,自然鄰點插值法 在數(shù)據(jù)點凸起的位置并不外推等值線(如泰森多邊形的輪廓線),。 9.最近鄰點插值法 最近鄰點插值法(NearestNeighbor)又稱泰森多邊形方法,泰森多邊形(Thiesen,又叫Dirichlet或Voronoi多邊形)分 析法是荷蘭氣象學家A.H.Thiessen提出的一種分析方法,。最初用于從離散分布氣象站的降雨量數(shù)據(jù)中計算平均降雨量,現(xiàn)在GIS和地理分析中經(jīng)常采 用泰森多邊形進行快速的賦值。實際上,最近鄰點插值的一個隱含的假設條件是任一網(wǎng)格點p(x,y)的屬性值都使用距它最近的位置點的屬性值,用每一 個網(wǎng)格節(jié)點的最鄰點值作為待的節(jié)點值,。當數(shù)據(jù)已經(jīng)是均勻間隔分布,要先將數(shù)據(jù)轉換為SURFER的網(wǎng)格文件,可以應用最近鄰點插值法;或者在一個文 件中,數(shù)據(jù)緊密完整,只有少數(shù)點沒有取值,可用最近鄰點插值法來填充無值的數(shù)據(jù)點,。有時需要排除網(wǎng)格文件中的無值數(shù)據(jù)的區(qū)域,在搜索橢圓 (SearchEllipse)設置一個值,對無數(shù)據(jù)區(qū)域賦予該網(wǎng)格文件里的空白值。設置的搜索半徑的大小要小于該網(wǎng)格文件數(shù)據(jù)值之間的距離,所有的無數(shù) 據(jù)網(wǎng)格節(jié)點都被賦予空白值,。在使用最近鄰點插值網(wǎng)格化法,將一個規(guī)則間隔的XYZ數(shù)據(jù)轉換為一個網(wǎng)格文件時,可設置網(wǎng)格間隔和XYZ數(shù)據(jù)的數(shù)據(jù)點之間的間 距相等,。最近鄰點插值網(wǎng)格化法沒有選項,它是均質且無變化的,對均勻間隔的數(shù)據(jù)進行插值很有用,同時,它對填充無值數(shù)據(jù)的區(qū)域很有效。 Reference http://blog.csdn.net/coy_wang/article/details/5027872 http://blog.sina.com.cn/s/blog_6e51df7f0100vb4b.html |
|