根據(jù)海天雨虹“《新理論物理學(xué)》理論架構(gòu)”理論,,宇宙作用力只有兩大類(lèi),電場(chǎng)力和磁場(chǎng)力,,電場(chǎng)力是由電荷產(chǎn)生的,,磁場(chǎng)力是由磁荷產(chǎn)生的,而磁荷是由相異電性的電荷組合構(gòu)成等效電偶極子形成的,,比如光子,。因此,所有的宇宙作用力都是電磁力,,實(shí)現(xiàn)了宇宙作用力的大統(tǒng)一,。 而宇宙中物質(zhì)之間最重要也是最普遍的作用力是物質(zhì)與物質(zhì)之間的萬(wàn)有作用力,萬(wàn)有作用力主要是萬(wàn)有作用引力與萬(wàn)有作用斥力,,它們都屬于磁場(chǎng)力,,磁場(chǎng)力是由光子堆或準(zhǔn)光子堆形成的等效電偶極子構(gòu)成的磁場(chǎng)產(chǎn)生的。 所以,,磁場(chǎng)的產(chǎn)生只與物質(zhì)的“(準(zhǔn))光子堆物質(zhì)體”特性有關(guān),,所謂的“(準(zhǔn))光子堆物質(zhì)體”,,就是微觀(guān)上組成物質(zhì)體的正電子、電子數(shù)目相等,,宏觀(guān)上,,物質(zhì)體沒(méi)有電性顯示。也就是說(shuō),,磁場(chǎng)與正物質(zhì),、反物質(zhì)無(wú)關(guān),正,、反物質(zhì)相遇反應(yīng)沒(méi)有理論上的那么大,。 通常所見(jiàn)的宇宙中,所有的原子,、分子……天體都是正物質(zhì)(準(zhǔn))光子堆,。 而下面“Nature paper”所載的實(shí)驗(yàn)內(nèi)容從一個(gè)方面佐證了“《新理論物理學(xué)》理論架構(gòu)”理論對(duì)萬(wàn)有引力詮釋解讀的理論正確性。 附錄(源自網(wǎng)絡(luò)): (地球重力場(chǎng)中,,)反物質(zhì)下降,,而不是上升
反物質(zhì)經(jīng)歷與正態(tài)物質(zhì)相同的重力。幾十年來(lái),,物理學(xué)家一直無(wú)法觀(guān)察到這種簡(jiǎn)單的現(xiàn)象,。歐洲核子研究中心的科學(xué)家制造了一種薄薄的反氫氣體,并將其從3米高的垂直軸頂部掉落——這是一項(xiàng)微妙的任務(wù),,因?yàn)槿绻丛优c任何常規(guī)物質(zhì)接觸,它們都將不復(fù)存在,。
自然 | 6分鐘閱讀
參考:自然文章
Antimatter falls down, not up Antimatter experiences the same force of gravity as regular matter. Observing this simple phenomenon had eluded physicists for decades. Scientists at CERN made a thin gas of antihydrogen and dropped it from the top of a 3-metre-tall vertical shaft — a delicate task, because if the antiatoms come into contact with any regular matter, they both cease to exist. Nature | 6 min read Reference: Nature paper 反物質(zhì)下降,,而不是上升:CERN實(shí)驗(yàn)證實(shí)了理論
幾十年來(lái),物理學(xué)家一直無(wú)法觀(guān)察到這種簡(jiǎn)單的現(xiàn)象,。物理學(xué)家已經(jīng)表明,,像其他經(jīng)歷重力的東西一樣,反物質(zhì)在下降時(shí)會(huì)向下下降,。 蓋恩斯維爾佛羅里達(dá)大學(xué)專(zhuān)門(mén)研究重力的理論家克利福德·威爾說(shuō),,這一結(jié)果并不令人驚訝——物質(zhì)和反物質(zhì)引力行為的差異將對(duì)物理學(xué)產(chǎn)生巨大影響——但幾十年來(lái),直接觀(guān)察它一直是一個(gè)夢(mèng)想,?!斑@真的是一個(gè)很酷的結(jié)果?!?br>瑞士日內(nèi)瓦附近的粒子物理實(shí)驗(yàn)室CERN的ALPHA-g實(shí)驗(yàn)負(fù)責(zé)人Jeffrey Hangst說(shuō),,由于重力比靜電吸引或磁性等其他無(wú)處不在的力量要弱得多,因此將其與實(shí)驗(yàn)室中的其他效應(yīng)分開(kāi)是一件微妙的事情,。Hangst說(shuō):“重力太弱了,,你真的必須小心,。”他也是丹麥奧胡斯大學(xué)的物理學(xué)家,。他和他的合作者于9月27日在Nature1上報(bào)告了這些發(fā)現(xiàn),。 類(lèi)似的實(shí)驗(yàn)旨在測(cè)試重力對(duì)反物質(zhì)的作用強(qiáng)度是否與對(duì)物質(zhì)的作用強(qiáng)度相同。任何微小的差異都有助于解決物理學(xué)中最大的問(wèn)題之一——宇宙是如何幾乎完全由物質(zhì)構(gòu)成的,,盡管同樣數(shù)量的物質(zhì)和反物質(zhì)本應(yīng)從大爆炸中產(chǎn)生,。
相同的質(zhì)量,相同的重力
在反物質(zhì)的顛倒世界里,,原子核由帶負(fù)電荷的反質(zhì)子組成,,由帶正電荷的反電子或正電子圍繞在軌道上。然而,,根據(jù)粒子物理學(xué)的標(biāo)準(zhǔn)模型,,相反的電荷幾乎應(yīng)該是唯一的區(qū)別:粒子和反粒子應(yīng)該具有幾乎相同的屬性。特別是,,實(shí)驗(yàn)證實(shí),,在實(shí)驗(yàn)誤差范圍內(nèi),正電子和反質(zhì)子的質(zhì)量與它們的對(duì)應(yīng)物相同,。 根據(jù)愛(ài)因斯坦的廣義相對(duì)論,,所有相同質(zhì)量的物體的重量應(yīng)該相同——換句話(huà)說(shuō),它們應(yīng)該經(jīng)歷完全相同的引力加速度,。 為了測(cè)試這一原理,,Hangst和他的合作者希望設(shè)計(jì)一個(gè)實(shí)驗(yàn),以顯示中性原子反氫被丟棄時(shí)發(fā)生了什么,。Hangst說(shuō):“用帶電粒子做實(shí)驗(yàn)幾乎是不可能的,,所以反氫是完美的候選者?!?br>反物質(zhì)顆粒在實(shí)驗(yàn)室中經(jīng)常產(chǎn)生,。例如,高能粒子碰撞產(chǎn)生的大多數(shù)粒子都是成對(duì)形成的——一個(gè)物質(zhì)粒子及其反粒子,。但很難讓反粒子結(jié)合成反原子,,因?yàn)榉次镔|(zhì)粒子通常壽命很短。當(dāng)反粒子與粒子相遇時(shí),,它們都不再存在,,并重新轉(zhuǎn)化為能量,這是一個(gè)被稱(chēng)為湮滅的過(guò)程,。在一個(gè)主要由物質(zhì)組成的世界里,,這使得反物質(zhì)粒子很難找到彼此。 歐洲核子研究組織目前是世界上唯一可以制造抗氫的地方,。它有一個(gè)從高速質(zhì)子碰撞中制造反質(zhì)子的加速器,,以及一個(gè)名為ELENA的“減速器”,,可以減慢它們的速度,以便進(jìn)一步操縱,。歐洲核子研究中心反物質(zhì)研究大廳的幾種不同的實(shí)驗(yàn)以ELENA為原料,。ALPHA-g是其中之一,它結(jié)合了反質(zhì)子和從放射源收集的正電子,。
罐子里的反物質(zhì)
在制造了數(shù)千個(gè)反氫原子的薄氣體后,,研究人員將其推上一個(gè)3米高的垂直軸,周?chē)h(huán)繞著超導(dǎo)電磁線(xiàn)圈,。這些可以產(chǎn)生一種磁性“錫罐”,,以防止反物質(zhì)與物質(zhì)接觸并湮滅。接下來(lái),,研究人員讓一些較熱的反原子逸出,,使罐子中的氣體變冷,僅比絕對(duì)零度高0.5°C——其余的反原子移動(dòng)緩慢,。 然后,,研究人員逐漸削弱了陷阱頂部和底部的磁場(chǎng)——類(lèi)似于取下罐子的蓋子和底部——并使用兩個(gè)傳感器在它們逃脫和湮滅時(shí)檢測(cè)到反原子。當(dāng)打開(kāi)任何氣體容器時(shí),,內(nèi)容物往往會(huì)向各個(gè)方向膨脹,,但在這種情況下,反原子的低速度意味著重力具有可觀(guān)察到的影響:它們大多來(lái)自底部開(kāi)口,,只有四分之一來(lái)自頂部,。
黑洞噴氣機(jī)開(kāi)始揭示他們的反物質(zhì)秘密
為了確保這種不對(duì)稱(chēng)是由于重力造成的,研究人員必須將磁場(chǎng)的強(qiáng)度控制到至少10,000分之一的精度,。位于Gif-sur-Yvette的法國(guó)替代能源和原子能委員會(huì)的物理學(xué)家,、歐洲核子研究中心另一項(xiàng)反氫實(shí)驗(yàn)GBAR的發(fā)言人Patrice Pérez說(shuō),這也許是他們最了不起的壯舉,。 結(jié)果與經(jīng)歷與氫原子相同的重力的反原子一致,。誤差幅度仍然相當(dāng)大,,但實(shí)驗(yàn)至少可以最終排除反氫向上下降的可能性,。
實(shí)驗(yàn)里程碑
2010年,Hangst的團(tuán)隊(duì)是第一個(gè)長(zhǎng)時(shí)間成功捕獲反氫的團(tuán)隊(duì),,從2016年開(kāi)始,,他們能夠測(cè)量反原子如何吸收光。但他說(shuō),,重力實(shí)驗(yàn)需要一個(gè)新的復(fù)雜程度,。“到目前為止,,這是我們做過(guò)的最困難的事情,?!?br> 在里程碑式的激光測(cè)試中固定了短暫的反物質(zhì)原子
特倫托意大利國(guó)家核物理研究所的物理學(xué)家Ruggiero Caravita指出,如果沒(méi)有別的,,沒(méi)有人會(huì)想到反物質(zhì)會(huì)下降,,因?yàn)榉促|(zhì)子是由反夸克組成的,但這些反質(zhì)子只占反質(zhì)子質(zhì)量的不到1%:其余的是將它們保持在一起的能量,。Caravita說(shuō):“內(nèi)部人士長(zhǎng)期以來(lái)一直預(yù)計(jì),,任何違規(guī)行為,如果存在,,都不能超過(guò)1%,。”超越這一點(diǎn)不僅會(huì)顛覆引力理論,,還會(huì)顛覆粒子物理學(xué)的標(biāo)準(zhǔn)模型,。他說(shuō),盡管如此,,ALPHA-g結(jié)果是一個(gè)里程碑,。 Caravita正在領(lǐng)導(dǎo)第三個(gè)CERN實(shí)驗(yàn),稱(chēng)為AEgIS,,該實(shí)驗(yàn)將試圖在沒(méi)有任何磁場(chǎng)的情況下測(cè)量反氫原子束的引力,。佩雷斯的GBAR旨在通過(guò)首先制造正反氫離子(帶有額外正電子的抗氫)來(lái)達(dá)到1%的精度,這將有助于將氣體冷卻到比絕對(duì)零度高出幾分之一度,。 其他努力旨在測(cè)量作用于正電子的引力,,正電子是一種由一個(gè)電子和一個(gè)正電子相互運(yùn)行的短命粒子。ALPHA-g本身計(jì)劃通過(guò)讓反氫原子上下碰撞并與自己形成量子疊加來(lái)達(dá)到1%的精度,。
Antimatter falls down, not up: CERN experiment confirms theory
Observing this simple phenomenon had eluded physicists for decades.
Davide Castelvecchi
Physicists have shown that, like everything else experiencing gravity, antimatter falls downwards when dropped. This outcome is not surprising — a difference in the gravitational behaviour of matter and antimatter would have huge implications for physics — but observing it directly had been a dream for decades, says Clifford Will, a theoretician who specializes in gravity at the University of Florida in Gainesville. “It really is a cool result.” Because gravity is much weaker than other ubiquitous forces such as electrostatic attraction or magnetism, separating it from other effects in the laboratory is a delicate affair, says Jeffrey Hangst, who leads of the ALPHA-g experiment at CERN, the particle physics laboratory near Geneva, Switzerland. “Gravity is just so bloody weak, you really have to be careful,” says Hangst, who is also a physicist at the University of Aarhus in Denmark. He and his collaborators reported the findings on 27 September in Nature1. Similar experiments will aim to test whether gravity acts with the same strength on antimatter as it does on matter. Any tiny discrepancies could help to solve one of the biggest problems in physics — how the Universe came to be made almost exclusively of matter, even though equal amounts of matter and antimatter should have arisen from the Big Bang.
Same mass, same gravity
In the topsy-turvy world of antimatter, atomic nuclei are made of negatively charged antiprotons, orbited by positively charged antielectrons, or positrons. According to the standard model of particle physics, however, the opposite charges should be pretty much the only difference: particles and antiparticles should have nearly all the same properties. In particular, experiments have confirmed that positrons and antiprotons have the same masses as their matter counterparts, within the limits of experimental errors. According to Einstein’s general theory of relativity, all objects of the same mass should weigh the same — in other words, they should experience exactly the same gravitational acceleration. To put this principle to the test, Hangst and his collaborators wanted to design an experiment that would show what happened when the neutral atom antihydrogen was dropped. “It’s almost impossible to do an experiment with a charged particle, so antihydrogen is the perfect candidate,” says Hangst. Antimatter particles are routinely created in laboratories. For example, most particles produced by high-energy particle collisions are made in pairs — one particle of matter and its antiparticle. But it is hard to get antiparticles to combine into antiatoms because antimatter particles are typically very short-lived. When an antiparticle meets a particle, they both cease to exist and turn back into energy, in a process called annihilation. In a world made primarily of matter, this makes it hard for antimatter particles to find each other. CERN is currently the only place in the world where antihydrogen can be made. It has an accelerator that makes antiprotons from high-speed proton collisions, and a 'decelerator’ called ELENA that slows them down enough to be held for further manipulation. Several different experiments feed off ELENA in CERN’s antimatter research hall. ALPHA-g is one of them, and it combines antiprotons with positrons it collects from a radioactive source.
Antimatter in a can
After making a thin gas of thousands of antihydrogen atoms, researchers pushed it up a 3-metre-tall vertical shaft surrounded by superconducting electromagnetic coils. These can create a kind of magnetic 'tin can’ to keep the antimatter from coming into contact with matter and annihilating. Next, the researchers let some of the hotter antiatoms escape, so that the gas in the can got colder, down to just 0.5 °C above absolute zero — and the remaining antiatoms were moving slowly. The researchers then gradually weakened the magnetic fields at the top and bottom of their trap — akin to removing the lid and base of the can — and detected the antiatoms using two sensors as they escaped and annihilated. When opening any gas container, the contents tend to expand in all directions, but in this case the antiatoms’ low velocities meant that gravity had an observable effect: most of them came out of the bottom opening, and only one-quarter out of the top.
Black-hole jets begin to reveal their antimatter secrets
To make sure that this asymmetry was due to gravity, the researchers had to control the strength of the magnetic fields to a precision of at least one part in 10,000. This was perhaps their most remarkable feat, says Patrice Pérez, a physicist at the French Alternative Energies and Atomic Energy Commission in Gif-sur-Yvette, and spokesperson for GBAR, another of CERN’s antihydrogen experiments. The results were consistent with the antiatoms experiencing the same force of gravity as hydrogen atoms would. The error margins are still rather large, but the experiment can at least conclusively rule out the possibility that antihydrogen falls upwards.
Experimental milestone
In 2010, Hangst’s team was the first one to succeed at trapping antihydrogen for an extended time and starting in 2016 they were able to measure how the antiatoms absorb light. But the gravity experiment required a new level of sophistication, he says. “This is by far the most difficult thing that we’ve done.”
Ephemeral antimatter atoms pinned down in milestone laser test
Ruggero Caravita, a physicist at the Italian National Institute for Nuclear Physics in Trento, points out that no one would have expected antimatter to fall up, if nothing else, because antiprotons are made of antiquarks, but these only constitute less than 1% of an antiproton’s mass: the rest is the energy that keeps them together. “Insiders have long expected that any violation, if it exists, cannot be over 1%,” says Caravita. Going beyond that would subvert not only the theory of gravitation, but also the standard model of particle physics. Still, the ALPHA-g result was a milestone, he says. Caravita is leading a third CERN experiment, called AEgIS, which will attempt to measure the gravitational force on a beam of antihydrogen atoms in the absence of any magnetic fields. Perez’s GBAR will aim to reach 1% precision by first making positive antihydrogen ions (antihydrogen with an extra positron), which will help to cool the gas down to a fraction of a degree above absolute zero. Other efforts aim to measure gravity acting on positronium, a short-lived particle made of one electron and one positron orbiting each other. ALPHA-g itself plans to aim for 1% precision by letting antihydrogen atoms bump up and down and form a quantum superposition with themselves.
Doi: https:///10.1038/d41586-023-03043-0
|