久久国产成人av_抖音国产毛片_a片网站免费观看_A片无码播放手机在线观看,色五月在线观看,亚洲精品m在线观看,女人自慰的免费网址,悠悠在线观看精品视频,一级日本片免费的,亚洲精品久,国产精品成人久久久久久久

分享

人工智能預(yù)測(cè)14萬乳腺癌女性生死

 SIBCS 2023-05-11 發(fā)布于上海

  預(yù)后(prognosis)是對(duì)結(jié)局(outcome)的預(yù)測(cè),,最大的結(jié)局莫過于生死,。乳腺癌臨床預(yù)后工具通過個(gè)體化風(fēng)險(xiǎn)預(yù)測(cè),,有助于乳腺癌醫(yī)療決策。不過,,現(xiàn)有的預(yù)后工具本質(zhì)上僅限于治療特定分期的患者亞組,。對(duì)任何分期乳腺癌患者進(jìn)行診斷后死亡風(fēng)險(xiǎn)精準(zhǔn)預(yù)測(cè),可能有助于臨床分層隨訪,、根據(jù)患者結(jié)局預(yù)測(cè)向患者提供咨詢或確定適合入組臨床試驗(yàn)的高風(fēng)險(xiǎn)個(gè)體,。過去,大多采用統(tǒng)計(jì)學(xué)回歸模型進(jìn)行臨床結(jié)局預(yù)測(cè)建模,。近年來,,機(jī)器學(xué)習(xí)等人工智能方法雖然已被廣泛用于臨床預(yù)測(cè)建模,但是既往研究也大多局限于小樣本人群特定分期乳腺癌患者亞組,。

  2023年5月10日,,國(guó)際四大醫(yī)學(xué)期刊之一、英國(guó)醫(yī)學(xué)會(huì)《英國(guó)醫(yī)學(xué)雜志》正刊發(fā)表英國(guó)癌癥研究基金會(huì)牛津中心牛津大學(xué)超大樣本人群隊(duì)列研究報(bào)告,,對(duì)用于臨床預(yù)測(cè)任何分期乳腺癌女性10年乳腺癌相關(guān)死亡風(fēng)險(xiǎn)統(tǒng)計(jì)學(xué)回歸模型機(jī)器學(xué)習(xí)模型進(jìn)行了開發(fā)和內(nèi)部+外部驗(yàn)證,,對(duì)統(tǒng)計(jì)學(xué)回歸模型和機(jī)器學(xué)習(xí)模型的結(jié)果進(jìn)行了比較。


  該研究首先將英國(guó)初級(jí)和二級(jí)醫(yī)療保健數(shù)據(jù)庫全國(guó)癌癥登記數(shù)據(jù)庫,、醫(yī)院事件統(tǒng)計(jì)數(shù)據(jù)全國(guó)死亡登記數(shù)據(jù)庫的患者個(gè)體水平數(shù)據(jù)進(jìn)行關(guān)聯(lián),,其中2000年1月1日至2020年12月31日診斷為乳腺浸潤(rùn)癌且數(shù)據(jù)完整的年齡≥20歲女性共計(jì)14萬1765例。隨后采用了4種建模策略,,包括2種回歸模型(多因素比例風(fēng)險(xiǎn)回歸競(jìng)爭(zhēng)風(fēng)險(xiǎn)回歸)和2種機(jī)器學(xué)習(xí)(XGBoost人工神經(jīng)網(wǎng)絡(luò))方法,,采用內(nèi)部+外部交叉驗(yàn)證對(duì)模型進(jìn)行定性分析,采用隨機(jī)效應(yīng)薈萃分析匯總區(qū)分和校準(zhǔn)指標(biāo)的估計(jì)值,,采用校準(zhǔn)曲線決策曲線分析對(duì)模型性能,、可移植性和臨床實(shí)用性進(jìn)行定量分析

多因素比例風(fēng)險(xiǎn)回歸模型

競(jìng)爭(zhēng)風(fēng)險(xiǎn)回歸模型

  結(jié)果發(fā)現(xiàn),,中位4.16年(四分位1.76~8.26)隨訪期間,,發(fā)生2萬1688例乳腺癌相關(guān)死亡和1萬1454例其他原因死亡。將乳腺癌診斷后最長(zhǎng)隨訪時(shí)間限制為10年,,共計(jì)68萬8564.81人×年發(fā)生2萬0367例乳腺癌相關(guān)死亡,。乳腺癌相關(guān)粗死亡率為萬分之295.79(95%置信區(qū)間:291.75~299.88)。

  多因素比例風(fēng)險(xiǎn)回歸模型和競(jìng)爭(zhēng)風(fēng)險(xiǎn)模型的預(yù)測(cè)因素各不相同,,但是都包括診斷年齡,、體重指數(shù),、吸煙狀況,、診斷途徑、激素受體狀態(tài),、癌癥分期和乳腺癌分級(jí),。

  在全部模型中,隨機(jī)效應(yīng)薈萃分析匯總預(yù)測(cè)區(qū)分度一致性指數(shù)依次為:
  • 多因素比例風(fēng)險(xiǎn)回歸模型:0.858(95%置信區(qū)間:0.853~0.864,95%預(yù)測(cè)區(qū)間:0.843~0.873)并且校準(zhǔn)曲線顯示校準(zhǔn)度尚可接受,。
  • 競(jìng)爭(zhēng)風(fēng)險(xiǎn)回歸模型:0.849(95%置信區(qū)間:0.839~0.859,,95%預(yù)測(cè)區(qū)間:0.821~0.876)并且缺乏對(duì)匯總指標(biāo)系統(tǒng)性誤校準(zhǔn)的證據(jù)。
  • 神經(jīng)網(wǎng)絡(luò):0.847(95%置信區(qū)間:0.835~0.858,,95%預(yù)測(cè)區(qū)間:0.816~0.878)
  • XGBoost:0.821(95%置信區(qū)間:0.813~0.828,,95%預(yù)測(cè)區(qū)間:0.80~0.837)


  機(jī)器學(xué)習(xí)模型與統(tǒng)計(jì)學(xué)回歸模型相比,誤校準(zhǔn)模式較復(fù)雜,、區(qū)域和分期相關(guān)性能變化較大,。

  決策曲線分析表明,該研究測(cè)試的多因素比例風(fēng)險(xiǎn)回歸模型和競(jìng)爭(zhēng)風(fēng)險(xiǎn)回歸模型與2種機(jī)器學(xué)習(xí)方法相比,,臨床實(shí)用性可能更高,。


  因此,該研究結(jié)果表明,,對(duì)于任何分期的乳腺癌女性,,根據(jù)該數(shù)據(jù)集可用的預(yù)測(cè)因素,統(tǒng)計(jì)學(xué)回歸模型機(jī)器學(xué)習(xí)方法相比,,性能更好且更一致,,可能值得進(jìn)一步評(píng)估潛在臨床用途,例如分層隨訪,。

  不過,,該研究數(shù)據(jù)全部來自基層醫(yī)療保健機(jī)構(gòu),并未考慮高風(fēng)險(xiǎn)基因突變,、多基因或多基因組學(xué)數(shù)據(jù)以及乳房密度,,這些數(shù)據(jù)可能提供額外的預(yù)測(cè)價(jià)值;對(duì)乳腺癌家族史等因素臨床編碼的依賴,,可能偏向于那些更顯著的家譜因素,;此外,由于未記錄陽性家族史者被假定為無家族史,,故可能發(fā)生錯(cuò)誤分類,;處方數(shù)據(jù)也可能出現(xiàn)錯(cuò)誤分類偏差,因?yàn)椴⒎侨克幬锒加伤巹熣{(diào)配或由患者自己個(gè)人服用,。中位僅4.16年隨訪時(shí)間對(duì)于10年乳腺癌相關(guān)死亡風(fēng)險(xiǎn)預(yù)測(cè)也偏少,,故有必要進(jìn)一步隨訪。

  看來,,龍游淺水遭蝦戲,,虎落平陽被犬欺,得志貓兒雄過虎,,落毛鳳凰不如雞,,牛津大學(xué)的人工智能到了基層也寂寞,,還是不如傳統(tǒng)方法經(jīng)濟(jì)、簡(jiǎn)便又實(shí)用,,有些地方可能連回歸模型或臨床指南也不需要,,醫(yī)療決策完全由科室主任根據(jù)個(gè)人經(jīng)驗(yàn)拍板即可。


BMJ. 2023 May 10;381:e073800. IF: 93.333

Development and internal-external validation of statistical and machine learning models for breast cancer prognostication: cohort study.

Ash Kieran Clift, David Dodwell, Simon Lord, Stavros Petrou, Michael Brady, Gary S Collins, Julia Hippisley-Cox.

Cancer Research UK Oxford Centre, Oxford, UK; University of Oxford, Oxford, UK.

OBJECTIVE: To develop a clinically useful model that estimates the 10 year risk of breast cancer related mortality in women (self-reported female sex) with breast cancer of any stage, comparing results from regression and machine learning approaches.

DESIGN: Population based cohort study.

SETTING: QResearch primary care database in England, with individual level linkage to the national cancer registry, Hospital Episodes Statistics, and national mortality registers.

PARTICIPANTS: 141765 women aged 20 years and older with a diagnosis of invasive breast cancer between 1 January 2000 and 31 December 2020.

MAIN OUTCOME MEASURES: Four model building strategies comprising two regression (Cox proportional hazards and competing risks regression) and two machine learning (XGBoost and an artificial neural network) approaches. Internal-external cross validation was used for model evaluation. Random effects meta-analysis that pooled estimates of discrimination and calibration metrics, calibration plots, and decision curve analysis were used to assess model performance, transportability, and clinical utility.

RESULTS: During a median 4.16 years (interquartile range 1.76-8.26) of follow-up, 21688 breast cancer related deaths and 11454 deaths from other causes occurred. Restricting to 10 years maximum follow-up from breast cancer diagnosis, 20367 breast cancer related deaths occurred during a total of 688564.81 person years. The crude breast cancer mortality rate was 295.79 per 10000 person years (95% confidence interval 291.75 to 299.88). Predictors varied for each regression model, but both Cox and competing risks models included age at diagnosis, body mass index, smoking status, route to diagnosis, hormone receptor status, cancer stage, and grade of breast cancer. The Cox model's random effects meta-analysis pooled estimate for Harrell's C index was the highest of any model at 0.858 (95% confidence interval 0.853 to 0.864, and 95% prediction interval 0.843 to 0.873). It appeared acceptably calibrated on calibration plots. The competing risks regression model had good discrimination: pooled Harrell's C index 0.849 (0.839 to 0.859, and 0.821 to 0.876, and evidence of systematic miscalibration on summary metrics was lacking. The machine learning models had acceptable discrimination overall (Harrell's C index: XGBoost 0.821 (0.813 to 0.828, and 0.805 to 0.837); neural network 0.847 (0.835 to 0.858, and 0.816 to 0.878)), but had more complex patterns of miscalibration and more variable regional and stage specific performance. Decision curve analysis suggested that the Cox and competing risks regression models tested may have higher clinical utility than the two machine learning approaches.

CONCLUSION: In women with breast cancer of any stage, using the predictors available in this dataset, regression based methods had better and more consistent performance compared with machine learning approaches and may be worthy of further evaluation for potential clinical use, such as for stratified follow-up.

DOI: 10.1136/bmj-2022-073800

    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多