Maximum Difference Between Node and Ancestor (M)
題目
Given the root of a binary tree, find the maximum value V for which there exist different nodes A and B where V = |A.val - B.val| and A is an ancestor of B .
A node A is an ancestor of B if either: any child of A is equal to B , or any child of A is an ancestor of B .
Example 1:
Input: root = [8,3,10,1,6,null,14,null,null,4,7,13]
Output: 7
Explanation: We have various ancestor-node differences, some of which are given below :
|8 - 3| = 5
|3 - 7| = 4
|8 - 1| = 7
|10 - 13| = 3
Among all possible differences, the maximum value of 7 is obtained by |8 - 1| = 7.
Example 2:
Input: root = [1,null,2,null,0,3]
Output: 3
Constraints:
- The number of nodes in the tree is in the range
[2, 5000] .
0 <= Node.val <= 10^5
題意
找到一組結(jié)點(diǎn),,其中一個(gè)是另一個(gè)祖先結(jié)點(diǎn),使得這兩個(gè)結(jié)點(diǎn)的差值最大,。
思路
遞歸處理,,兩種方法:
- 每次找到左子樹(shù)和右子樹(shù)中的最值,以此更新結(jié)果,。
- 每次遞歸更新當(dāng)前路徑上的最大值和最小值,,到達(dá)葉結(jié)點(diǎn)時(shí)計(jì)算差值并返回。
代碼實(shí)現(xiàn)
Java
遞歸1
class Solution {
private int diff;
public int maxAncestorDiff(TreeNode root) {
diff = 0;
dfs(root);
return diff;
}
private int[] dfs(TreeNode root) {
if (root == null) {
return null;
}
int[] l = dfs(root.left), r = dfs(root.right);
if (l == null && r == null) {
return new int[] { root.val, root.val };
}
int cMin = 0, cMax = 0;
if (l != null && r != null) {
cMin = Math.min(l[0], r[0]);
cMax = Math.max(l[1], r[1]);
} else if (l != null) {
cMin = l[0];
cMax = l[1];
} else {
cMin = r[0];
cMax = r[1];
}
diff = Math.max(diff, Math.max(Math.abs(root.val - cMin), Math.abs(root.val - cMax)));
return new int[] { Math.min(root.val, cMin), Math.max(root.val, cMax) };
}
}
遞歸2
class Solution {
public int maxAncestorDiff(TreeNode root) {
if (root == null) {
return 0;
}
return dfs(root, root.val, root.val);
}
private int dfs(TreeNode root, int max, int min) {
if (root == null) {
return max - min;
}
max = Math.max(root.val, max);
min = Math.min(root.val, min);
return Math.max(dfs(root.left, max, min), dfs(root.right, max, min));
}
}
|