手征反常,,英文名叫chiral anomaly, 又叫 quantum anomaly, axial anomaly, 還有叫 Adler-Bell-Jackiw (ABJ) anomaly和triangle anomaly[17]. 這些豐富的叫法都挺合適的,而且基本都沿用至今,,但是對于初學者來說卻是丈二和尚摸不著頭腦,,很是頭疼的。物理上,,手征反常是有準確定義的,,用英文來說就是” The chiral anomaly is a quantum term that violates the classical conservation of the chiral current”[25]。解釋起來就是說,,手征反常是一種量子效應,,但有趣的是并沒有經(jīng)典對應。一般為了得到一個量子理論,,我們會先得到一個經(jīng)典理論(Lagrangian)然后通過量子化的手續(xù)得到相應的量子理論,。在這個過程中,經(jīng)典體系中的對稱性也得到一個量子版本,,根據(jù)Noether定理每種對稱變換給出一個相應的守恒流(或守恒荷),,比如熟知的Lorentz對稱性或CPT對稱等等。這些都是量子場論教科書入門的知識,,就不多贅述,。但是一個經(jīng)典的對稱性就一定存在一個量子的對稱性嗎?或者換個說法,經(jīng)典系統(tǒng)中存在兩個對稱性,,那么量子化之后,,這個兩個對稱依然可以自洽共存,不打架,?物理的世界就是充滿著矛盾,,這時手征對稱性就扮演這樣的'壞分子’。對于一個無質量的Dirac Lagrangian,,系統(tǒng)存在一個經(jīng)典場論下的手征對稱性,,也就是其左右手費米子數(shù)是分別守恒的;一旦量子化,,這個手征對稱性就會本征自發(fā)地破壞,其結果就是左右手費米子數(shù)不再保持不變,,同時手征守恒流多出個源項[6],,
[1]. Hasan, M. Zahid, and Joel E. Moore. arXiv:1011.5462; DOI: 10.1146/annurev- conmatphys-062910-140432 (2010).[2]. Wehling, T. O., Annica M. Black-Schaffer, and Alexander V. Balatsky. Advances in Physics 63.1 (2014): 1-76.[3]. Cayssol, Jér?me. Comptes Rendus Physique 14.9 (2013): 760-778.[4]. Vafek, Oskar, and Ashvin Vishwanath.arXiv:1306.2272; DOI: 10.1146/annurev-conmatphys- 031113-133841 (2013).[5]. Fruchart, Michel, and David Carpentier. Comptes Rendus Physique 14.9 (2013): 779-815.[6]. Hosur, Pavan, and Xiaoliang Qi.Comptes Rendus Physique 14.9 (2013): 857-870.[7]. Xu, Su-Yang, et al. Science 347.6219 (2015): 294-298.[8]. Xu, Su-Yang, et al. Nature Physics 11.9 (2015): 748-754.[9]. Yang, L. X., et al. Nature Physics 11.9 (2015): 728-732.[10]. Lv, B. Q., et al. arXiv:1503.09188 (2015); Nature Physics 11.9 (2015): 724-727.[11]. Lv, B. Q., et al. arXiv:1502.04684 (2015); Phys Rev X. 5.031013 (2015).[12]. Borrmann, Horst, et al. "Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP." (2015).[13]. Huang, Xiaochun, et al. arXiv:1503.01304; Phys Rev X. 5.031023 (2015).[14]. Xiong, Jun, et al. Science 350.6259 (2015): 413-416.[15]. Liang, Tian, et al. Nature materials 14.3 (2015): 280-284.[16]. Gozzi, E., D. Mauro, and A. Silvestri. International Journal of Modern Physics A 20.20n21 (2005): 5009-5035.[17]. Ioffe, B. L. International Journal of Modern Physics A 21.31 (2006): 6249-6266.[18]. Maeda, Nobuki. Physics Letters B 376.1 (1996): 142-147.[19]. Kharzeev, Dmitri E. Progress in Particle and Nuclear Physics 75 (2014): 133-151.[20]. Creutz, Michael. arXiv:1309.6288 (2013).[21]. Nielsen, Holger Bech, and Masao Ninomiya. Physics Letters B 105.2 (1981): 219-223.[22]. Banerjee, H. arXiv hep-th/9907162 (1999).[23]. Goswami, Pallab, and Sumanta Tewari.Physical Review B 88.24 (2013): 245107.[24]. Burkov, A. A., and Leon Balents. Physical review letters 107.12 (2011): 127205.[25]. en.wikipedia.org/wiki/C.[26]. Ba?ar, G?k?e, Dmitri E. Kharzeev, and Ho-Ung Yee. Physical Review B 89.3 (2014): 035142.[27]. Son, D. T., and B. Z. Spivak.Physical Review B 88.10 (2013): 104412.[28]. Wilczek, Frank. Physical review letters 58.18 (1987): 1799.[29]. Zyuzin, A. A., and A. A. Burkov. Physical Review B 86.11 (2012): 115133.[30]. Carroll, Sean M., George B. Field, and Roman Jackiw. Physical Review D 41.4 (1990): 1231.[31]. Casana, Rodolfo, Manoel M. Ferreira Jr, and Carlos EH Santos. Physical Review D 78.2 (2008): 025030.[32]. Fujikawa, Kazuo.Physical Review D 21.10 (1980): 2848.[33]. Fujikawa, Kazuo. Physical Review D 29.2 (1984): 285.[34]. Fukushima, Kenji, Dmitri E. Kharzeev, and Harmen J. Warringa. Physical Review D 78.7 (2008): 074033.[35]. Fujikawa, Kazuo. Physical Review Letters 42.18 (1979): 1195.[36]. Fujikawa, Kazuo. Physical Review Letters 44.26 (1980): 1733.[37]. Zhang, Shou-Cheng, and Jiangping Hu. Science 294.5543 (2001): 823-828.