久久国产成人av_抖音国产毛片_a片网站免费观看_A片无码播放手机在线观看,色五月在线观看,亚洲精品m在线观看,女人自慰的免费网址,悠悠在线观看精品视频,一级日本片免费的,亚洲精品久,国产精品成人久久久久久久

分享

加拿大生物信息學(xué)研討會(huì)資源寶藏

 健明 2021-07-14

昨晚我們生信技能樹的學(xué)習(xí)大使《二貨潛》神神秘秘的甩給我一個(gè)GitHub資源鏈接,,里面有一份非常好的數(shù)據(jù)分析學(xué)習(xí)資料:加拿大生物信息學(xué)研討會(huì),,而且篤定我們生信技能樹以前沒有分享過,。確實(shí)我在生信技能樹寫了1.3萬(wàn)篇教程,,還真記不清楚我以前有沒有分享過,。但是最近我們就分享過兩個(gè)類似的資源

學(xué)習(xí)資源真心是比想學(xué)習(xí)的人還多,,不信你就看下去!說實(shí)話,,寫完公眾號(hào),,我看到這個(gè)當(dāng)時(shí)就傻眼了:

文末友情宣傳

強(qiáng)烈建議你推薦給身邊的博士后以及年輕生物學(xué)PI,多一點(diǎn)數(shù)據(jù)認(rèn)知,,讓他們的科研上一個(gè)臺(tái)階:

加拿大生物信息學(xué)研討會(huì)資源寶藏

  • 官方主頁(yè)鏈接:
    https:///workshops/2018-epigenomic-data-analysis/

  • github 鏈接:
    https://github.com/bioinformatics-ca

  • twitter 主頁(yè):
    https://twitter.com/bioinfodotca

  • 各種主頁(yè):
    https://bioinformaticsdotca./

  • youtube 鏈接:
    https://www./channel/UCKbkfKk65PZyRCzUwXOJung

最重要:有視頻、有講義 PDF以及PPT ,、有實(shí)戰(zhàn),,并且都是講的特別詳細(xì)。** **放在最前面的話,,我覺得講義看2019的就行了,。如果加上視頻比較好理解,那就看2018`,。**
 


 
 
 
 
 容我打開 2019 資料網(wǎng)站:https://bioinformaticsdotca./
 點(diǎn)進(jìn)去界面是這樣的:
 
 再往下滑動(dòng):
 
 好了,,我們可以清楚的看到分為幾大塊。

2019

High-throughput Biology: From Sequence to Networks

這部分主要講從序列到最終的調(diào)控網(wǎng)絡(luò),,也包括了一些基礎(chǔ)的 UNIX/R  的學(xué)習(xí),。(這部分 PDF 421 頁(yè))

準(zhǔn)備工作:

1) R Preparation tutorials:
2) UNIX Preparation tutorials:
3) Sequencing Terminology
4) Cytoscape Preparation tutorials: Complete the introductory tutorial to Cytoscape

培訓(xùn)前需要查看的文獻(xiàn)
  • Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration

  • Genome structural variation discovery and genotyping

  • A survey of sequence alignment algorithms for next-generation sequencing

  • Genotype and SNP calling from next-generation sequencing data

  • Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud

  • Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown

  • ENCODE RNA-Seq Standards

  • Methods to study splicing from high-throughput RNA sequencing data

  • A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium

接下來就是一周的課程安排
  • Module 1: Introduction to High-throughput Sequencing

  • Module 2: Data Visualization

  • Module 3: Genome Alignment

  • Module 4: Small-Variant Calling and Annotation

  • Module 5: Structural Variant Calling

  • Module 6: De Novo Assembly

  • Module 7: Introduction to RNA Sequencing Analysis

  • Module 8: RNA-seq Alignment and Visualization

  • Paper: Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing

  • Module 9: Expression and Differential Expression

  • Module 10: Reference Free Alignment

  • Module 11: Isoform Discovery and Alternative Expression

  • Module 12: Introduction to Pathway and Network Analysis

  • Module 13: Finding Over-Represented Pathways

  • Module 14: Network Visualization and Analysis with Cytoscape and Reactome

  • Module 15: More Depth on Network and Pathway Analysis and Cytoscape Enrichment map

  • Module 16: Gene Function Prediction

  • Module 17: Regulatory Network Analysis

Introduction to R

兩天

Exploratory Analysis of Biological Data Using R

兩天

Bioinformatics for Cancer Genomics

這部分PDF 316 + 49 +  52 頁(yè)
這部分學(xué)癌癥相關(guān)的應(yīng)該是大有用處

  • Module 1: Introduction to Cancer Genomics

  • Module 2: Ethics of Data Usage and Security

  • Module 3: Databases and Visualization Tools

  • Module 4: Genome Alignment

  • Module 5: Genome Assembly-

  • Module 6: Copy Number Variants

  • Module 7: Somatic Mutations and Annotations

  • Module 8: Gene Expression Profiling

  • Module 9: Gene Fusion and Rearrangements

  • Module 10: Genes to Pathways

  • Module 11: Variants to Networks

  • Module 12: Integration of Clinical Data

Informatics for RNA-Seq Analysis

這部分就是我們最基礎(chǔ)的 RNA-seq 分析所需要做的內(nèi)容 這部分PDF 131 頁(yè)

  • Module 1: Introduction to Cloud Computing

  • Module 2: Introduction to RNA Sequencing Analysis

  • Module 3: RNA-seq Alignment and Visualization

  • Module 4: Expression and Differential Expression

  • Module 5: Reference Free Alignment

  • Module 6: Isoform Discovery and Alternative Expression

  • Module 7: Genome Guided and Genome-Free Transcriptome Assembly

  • Module 8: Functional Annotation and Analysis of Transcripts

Informatics on High-Throughput Sequencing Data

這部分PDF 182 頁(yè)

  • Module 1: Introduction to High-throughput Sequencing

  • Module 2: Data Visualization

  • Module 3: Genome Alignment

  • Module 4: Small-Variant Calling and Annotation

  • Module 5: Structural Variant Calling

  • Module 6: De Novo Assembly

Pathway and Network Analysis of -omics Data

這部分對(duì)于做調(diào)控網(wǎng)絡(luò)的應(yīng)該是大有幫助 這部分PDF 186  頁(yè)

  • Module 1: Introduction to Pathway and Network Analysis

  • Module 2 Finding Over-Represented Pathways

  • Module 3: Network Visualization and Analysis with Cytoscape

  • Module 4: More Depth on Network and Pathway Analysis

  • Module 5: Gene Function Prediction

  • Module 6: Regulatory Network Analysis

Using Clouds for Big Cancer Data Analysis

上面就是 2019 年培訓(xùn)資料相關(guān)的。
當(dāng)然這只是一部分,。

文末友情宣傳

強(qiáng)烈建議你推薦給身邊的博士后以及年輕生物學(xué)PI,,多一點(diǎn)數(shù)據(jù)認(rèn)知,讓他們的科研上一個(gè)臺(tái)階:

2018

Informatics on High-Throughput Sequencing Data 2018

課程鏈接:https://bioinformaticsdotca./high-throughput_biology_2017

Day 1

  • Module 1: Introduction to High-throughput Sequencing

  • Module 2: Data Visualization

  • Module 3: Genome Alignment

Day 2

  • Module 4: Small-Variant Calling and Annotation

  • Module 5: Structural Variant Calling

  • Module 6: De Novo Assembly

Infectious Disease Genomic Epidemiology 2018

課程鏈接:https://bioinformaticsdotca./epidemiology_2018

Day 1

  • Module 1: Introduction to Public Health Microbiology and Genomic Epidemiology

  • Module 2: Pathogen Genomic Analysis I

  • Module 3: Pathogen Genomic Analysis II

Day 2

  • Module 4: Antimicrobial Resistance Genes

  • Module 5: Phylogeographic Analysis

Day 3

  • Module 6: Emerging Pathogen Detection and Identification Using Metagenomics Samples

  • Module 7: Data Visualization

Informatics and Statistics for Metabolomics 2018

課程鏈接:https://bioinformaticsdotca./metabolomics_2018

Day 1

  • Module 1: Introduction to Metabolomics

  • Module 2: Metabolite Identification and Annotation

  • Module 3: Databases for Chemical, Spectral, and Biological Data

Day 2

  • Module 4: Backgrounder in Statistics

  • Module 5: MetaboAnalyst

  • Module 6: Future of Metabolomics

Pathway and Network Analysis of -Omics Data 2018

課程鏈接:https://bioinformaticsdotca./pathways_2018

Day 1

  • Module 1: Introduction to Pathway and Network Analysis

  • Module 2: Finding Over-Represented Pathways

  • Module 3: Network Visualization and Analysis with Cytoscape

Day 2

  • Module 4: More Depth on Pathway and Network Analysis

  • Module 5: Gene Function Prediction

Day 3

  • Module 6: Regulatory Network Analysis

Introduction to R 2018

課程鏈接:https://bioinformaticsdotca./intror_2018

Exploratory Analysis of Biological Data Using R 2018

課程鏈接:https://bioinformaticsdotca./eda_2018

  • Recording Session 1

  • Recording Session 2

  • Recording Session 3

  • Recording Session 4

  • Recording Session 5

  • Recording Session 6

  • Recording Session 7

  • Recording Session 8

Bioinformatics for Cancer Genomics 2018

課程鏈接:https://bioinformaticsdotca.//bicg_2017

Day 1

  • Module 1: Introduction to cancer genomics

  • Module 2: Databases and Visualization Tools

  • Module 3a: Cancer Databases

  • Module 3b: Visualization Tools

Day 2

  • Module 4: Genome Alignment

  • Module 5: Genome Assembly

  • Module 6: Copy Number Variants

Day 3

  • Module 7: Somatic Mutations and Annotations

  • Module 8: Gene Expression

Day 4

  • Module 9: Gene Fusion and Rearrangements

  • Module 10: Sharing and Scaling a VM

Day 5

  • Module 11: Working Reproducibly in the Cloud

  • Module 12: Big Data Analytics in the Cloud

  • Module 13: Genes to Pathways

Day 6

  • Module 14: Variants to Networks

  • Module 15: Clinical Data Integration

Informatics for RNA-Seq Analysis 2018

課程鏈接:https://bioinformaticsdotca./rnaseq_2018

Day 1

  • Module 1: Introduction to RNA Sequencing and Analysis

  • Module 2: RNA-seq alignment and visualization

Day 2

  • Module 3: Expression and Differential Expression

  • Module 4: Reference Free Alignment

Day 3

  • Module 5: Genome-Free De Novo Transcriptome Assembly

  • Module 6: Functional Annotation and Analysis of Transcripts

Informatics on High-Throughput Sequencing Data 2018

課程鏈接:https://bioinformaticsdotca./htseq_2018

Day 1

  • Module 1: Introduction to High-throughput Sequencing

  • Module 2: Data Visualization

  • Module 3: Genome Alignment

Day 2

  • Module 4: Small-Variant Calling and Annotation

  • Module 5: Structural Variant Calling

  • Module 6: De Novo Assembly

Epigenomic Data Analysis 2018

課程鏈接:https://bioinformaticsdotca./epigenomics_2018

Day 1

  • Module 1: Introduction to ChIP Sequencing and Analysis

  • Module 2: ChIP-Seq Alignment, Peak Calling, and Visualization

Day 2

  • Module 3: Introduction to WGBS and Analysis

  • Module 4: Downstream Analyses and Integrative Tools

Analysis of Metagenomic Data 2018

課程鏈接:https://bioinformaticsdotca./metagenomics_2018

Day 1

  • Module 1: Introduction to Metagenomics

  • Module 2: Marker Gene-Based Analysis

  • Module 3: PICRUSt

Day 2

  • Module 4: Metagenomic Taxanomic and Functional Composition

  • Module 5: Pulling Genomes from Metagenomes

Day 3

  • Module 6: Metatranscriptomics

  • Module 7: Statistical Tests for Metagenomics

  • Module 8: Biomarkers and Bringing It All Together

文末友情宣傳

強(qiáng)烈建議你推薦給身邊的博士后以及年輕生物學(xué)PI,,多一點(diǎn)數(shù)據(jù)認(rèn)知,讓他們的科研上一個(gè)臺(tái)階:

2017

High-Throughput Biology - From Sequence to Networks 2017

課程鏈接:https://bioinformaticsdotca./high-throughput_biology_2017

Day 1

  • Module 1: Introduction to High-throughput Sequencing

  • Module 2: Data Visualization

  • Module 3: Genome Alignment

Day 2

  • Module 4: Small-Variant Calling and Annotation

  • Module 5: Structural Variant Calling

  • Module 6: De Novo Assembly

Day 3

  • Module 7: Introduction to RNA Sequencing Analysis

  • Module 8: RNA-seq Alignment and Visualization

Day 4

  • Module 9: Expression and Differential Expression

  • Module 10: Reference Free Alignment

  • Module 11: Isoform Discovery and Alternative Expression

Day 5

  • Module 12: Introduction to Pathway and Network Analysis

  • Module 13: Finding Over-Represented Pathways

  • Module 14: Network Visualization and Analysis with Cytoscape

Day 6

  • Module 15: More Depth on Network and Pathway Analysis

  • Module 16: Gene Function Prediction

Day 6

  • Module 17: Regulatory Network Analysis

Infectious Disease Genomic Epidemiology 2017

課程鏈接:https://bioinformaticsdotca./genomic_epidemiology_2017

Day 1

  • Module 1: Introduction to Public Health Microbiology and Genomic Epidemiology

  • Module 2: Pathogen Genomic Analysis I

  • Module 3: Pathogen Genomic Analysis II

Day 2

  • Module 4: Antimicrobial Resistance Genes

  • Module 5: Phylogeographic Analysis

Day 3

  • Module 6: Emerging Pathogen Detection and Identification Using Metagenomics Samples

  • Module 7: Data Visualization

Bioinformatics of Genomic Medicine 2017

課程鏈接:https://bioinformaticsdotca./genomic_medicine_2017

Day 1

  • Module 1: Introduction and Patient Phenotyping and Genetic Disease

  • Module 2: Introduction to Tools, Computing Infrastructure, and Data

  • Module 3: Variant Annotation

  • Module 4: Translating Research Workflows into Clinical Tests

Day 2

  • Module 5: Available Epigenetics Data and Resources

  • Module 6: Epigenetic Profiling in Disease

  • Module 7: Patient Similarity Fusion

Pathway and Network Analysis of -Omics Data 2017

課程鏈接:https://bioinformaticsdotca./pathways_2017

Day 1

  • Module 1: Introduction to Pathway and Network Analysis

  • Module 2: Finding Over-Represented Pathways in Gene Lists

  • Module 3: Network Visualization and Analysis with Cytoscape

Day 2

  • Module 4: More Depth on Pathway and Network Analysis

  • Module 5: Gene Function Prediction

Day 3

  • Module 6: Regulatory Network Analysis

Introduction to R 2017

課程鏈接:https://bioinformaticsdotca./IntroR_2017

Exploratory Analysis of Biological Data Using R 2017

課程鏈接:https://bioinformaticsdotca./EDA_2017

Day 1

  • Module 1: Exploratory Data Analysis

  • Module 2: Regression

  • Module 3: Dimension Reduction

Day 2

  • Module 4: Clustering

  • Module 5: Hypothesis Testing

Bioinformatics for Cancer Genomics 2017

課程鏈接:https://bioinformaticsdotca.//bicg_2017

Day 1

  • Module 1: Introduction to cancer genomics

  • Module 2: Databases and Visualization Tools

Day 2

  • Module 3a: Genome Alignment

  • Module 3b: Genome Assembly

  • Module 4: Copy Number Variants

Day 3

  • Module 5: Somatic Mutations and Annotations

  • Module 6: Gene Expression

Day 4

  • Module 7: Gene Fusion and Rearrangements

  • Module 8: Variants to Networks

Day 5

  • Module 8: Variants to Networks

  • Module 9: Clinical Data Integration

Informatics for RNA-Seq Analysis 2017

課程鏈接:http://bioinformatics-ca./informatics_for_rna_seq_analysis_2016/

Day 1

  • Module 1: Introduction to RNA Sequencing and Analysis

  • Module 2: RNA-seq alignment and visualization

Day 2

  • Module 3: Expression and Differential Expression

  • Module 4: Reference Free Alignment

  • Module 5: Isoform discovery and alternative expression

Day 3

  • Module 6: Genome-Free De Novo Transcriptome Assembly

  • Module 7: Functional Annotation and Analysis of Transcripts

Informatics on High-Throughput Sequencing Data 2017

課程鏈接:https://bioinformaticsdotca./htseq_2017

Day 1

  • Module 1: Introduction to High-throughput Sequencing

  • Module 2: Data Visualization

  • Module 3: Genome Alignment

Day 2

  • Module 4: Small-Variant Calling and Annotation

  • Module 5: Structural Variant Calling

  • Module 6: De Novo Assembly

Informatics and Statistics for Metabolomics 2017

課程鏈接:https://bioinformaticsdotca./metabolomics_2017

Day 1

  • Module 1: Introduction to Metabolomics

  • Module 2: Metabolite Identification and Annotation

  • Module 3: Databases for Chemical, Spectral, and Biological Data

Day 2

  • Module 4: Backgrounder in Statisticss

  • Module 5: MetaboAnalyst

  • Module 6: Future of Metabolomics

Epigenomic Data Analysis 2017

課程鏈接:https://bioinformaticsdotca./epigenomics_2017

Day 1

  • Module 1: Introduction to ChIP Sequencing and Analysis

  • Module 2: ChIP-Seq Alignment, Peak Calling, and Visualization

Day 2

  • Module 3: Introduction to WGBS and Analysis

  • Module 4: Downstream Analyses and Integrative Tools

Microbiome Summer School - Big Data Analytics for Omics Science 2017

課程鏈接:https://bioinformaticsdotca./mss_2017

Day 1

  • Plenary 1: GUTOME 1010 and Beyond

  • Plenary 2: Microbiomes, Metagenomes, and Marker Genes

  • Plenary 3: Metagenomics Analysis

Day 2

  • Plenary 4: Microbiome Biomarker Discovery

  • Plenary 5: Metatranscriptomics

Day 3

  • Plenary 6: Host Genomics Applied to the Microbiome

  • Plenary 7: Introduction to Machine Learning for Biological Data

Day 4

  • Plenary 8: ElasticSearch to Facilitate Data Mining of Human Microbiome Databases

  • Plenary 9: Algorithms for Mass Spectrometry

  • Plenary 10: Efficient Multi-Locus Biomarker Discovery

文末友情宣傳

強(qiáng)烈建議你推薦給身邊的博士后以及年輕生物學(xué)PI,,多一點(diǎn)數(shù)據(jù)認(rèn)知,,讓他們的科研上一個(gè)臺(tái)階:

2016

Pathway and Network Analysis of -Omics Data 2016

課程鏈接:http://bioinformatics-ca./pathway_and_network_analysis_of_omics_data_2016/

Day 1

  • Module 1: Introduction to Pathway and Network Analysis

  • Module 2: Finding Over-Represented Pathways in Gene Lists

  • Module 3: Network Visualization and Analysis with Cytoscape

Day 2

  • Module 4: More Depth on Pathway and Network Analysis

  • Module 5: Gene Function Prediction

Day 3

  • Module 6: Regulatory Network Analysis

Introduction to R 2016

課程鏈接:http://bioinformatics-ca./introduction_to_r_2016/

Day 1

  • Module 1: The R Environment

  • Module 2: Programming Basics

  • Module 3: Using R for Data Analysis

Exploratory Analysis of Biological Data Using R 2016

課程鏈接:http://bioinformatics-ca./exploratory_analysis_of_biological_data_2016/

Day 1

  • Module 1: Exploratory Data Analysis

  • Module 2: Regression Analysis

  • Module 3: Dimension Reduction

Day 2

  • Module 4: Clustering Analysis

  • Module 5: Hypothesis Testing for EDA

Bioinformatics for Cancer Genomics 2016

課程鏈接:http://bioinformatics-ca./bioinformatics_for_cancer_genomics_2016/

Day 1

  • Module 1: Introduction to cancer genomics

  • Module 2.1: Databases and Visualization Tools

  • Module 2.2: Logging into the Cloud

Day 2

  • Module 3: Mapping and Genome Rearrangement

  • Module 4: Gene Fusion Discovery

Day 3

  • Module 5: Copy Number Alterations

  • Module 6: Somatic Mutations

Day 4

  • Module 7: Gene Expression Profiling

  • Module 8: Variants to Pathways

  • Part 1: How to annotate variants and prioritize potentially relevant ones

  • Part 2: From genes to pathways

Day 5

Network Analysis using Reactome

Informatics for RNA-Seq Analysis 2016

課程鏈接:http://bioinformatics-ca./informatics_for_rna_seq_analysis_2016/

Day 1

  • Module 0: Introduction to Cloud Computing

  • Module 1: Introduction to RNA Sequencing and Analysis

  • Module 2: RNA-seq alignment and visualization

Day 2

  • Module 3: Expression and Differential Expression

  • Module 4: Isoform discovery and alternative expression

  • Module 5: Reference Free Alignment

Informatics on High-Throughput Sequencing Data 2016

課程鏈接:http://bioinformatics-ca./informatics_on_high-throughput_sequencing_data_2016/

Day 1

  • Module 1: Introduction to HT-sequencing and Cloud Computing

  • Module 2: Genome Alignment

  • Module 3: Genome Visualization

  • Module 4: De Novo Assembly

Day 2

  • Module 5: Genome Variation

  • Module 6: Genome Structural Variation

  • Module 7: Bringing it Together with Galaxy

Informatics and Statistics for Metabolomics 2016

課程鏈接:http://bioinformatics-ca./informatics_and_statistics_for_metabolomics_2016/

Day 1

  • Module 1: Introduction to Metabolomics

  • Module 2: Metabolite Identification and Annotation

  • Module 3: Databases for Chemical, Spectral, and Biological Data

Day 2

  • Module 4: Backgrounder in Statistical Methods

  • Module 5: MetaboAnalyst

  • Module 6: Future of Metabolomics

Epigenomic Data Analysis 2016

課程鏈接:http://bioinformatics-ca./epigenomic_data_analysis_2016/

Day 1

  • Module 1: Introduction to ChIP Sequencing and Analysis

  • Module 2: ChIP-Seq Alignment, Peak Calling, and Visualization

Day 2

  • Module 3: Introduction to WGBS and Analysis

  • Module 4: Downstream Analyses and Integrative Tools

Analysis of Metagenomic Data 2016

課程鏈接:http://bioinformatics-ca./analysis_of_metagenomic_data_2016/

Day 1

  • Module 1: Introduction to Metagenomics and Computing in the Cloud

  • Module 2: Marker Gene-based Analysis of Taxonomic Composition

  • Module 3: Introduction to PICRUSt

Day 2

  • Module 4: Metagenomic Taxonomic Composition

  • Module 5: Metagenomic Functional Composition

Day 3

  • Module 6: Metatranscriptomics

  • Module 7: Biomarker Selection

2015

High-Throughput Biology - From Sequence to Networks 2015

課程鏈接:http://bioinformatics-ca./high_throughput_biology_2015/

Day 1

  • Module 1: Overview of HT-sequencing & Cloud Computing

  • Module 2: Reference Genome Alignment

  • Module 3: Data Visualization

  • Module 4: De Novo Assembly

Day 2

  • Module 5: Small variant calling & annotation

  • Module 6: Structural variation calling

  • Module 7: Bringing it all Together: Galaxy

Day 3

  • Module 8: Introduction to RNA sequencing and analysis

  • Module 9: RNA-seq alignment and visualization

Day 4

  • Module 10: Expression and Differential Expression

  • Module 11: Isoform discovery and alternative expression

Day 5

  • Module 12: Introduction to Pathway and Network Analysis

  • Module 13: Finding over-represented pathways in gene lists

  • Module 14: Cytoscape Intro, Demo and Enrichment Maps

Day 6

  • Module 15: Depth on Pathway and Network Analysis

  • Module 16: Gene Function Prediction

Day 7

  • Module 17: Gene Regulation Network Analysis

Introduction to R 2015

課程鏈接:http://bioinformatics-ca./introduction_to_r_2015/

Day 1

  • Module 1: First Steps

  • Module 2: Programming Basics

- Module 3: Using R for Data Analysis

Exploratory Analysis of Biological Data Using R 2015

課程鏈接:http://bioinformatics-ca./EDA_in_r_2015/

Day 1

  • Module 1: Exploratory Data Analysis

  • Module 2: Regression Analysis

  • Module 3: Dimension Reduction

Day 2

  • Module 4: Clustering Analysis

  • Module 5: Hypothesis Testing for EDA

Bioinformatics for Cancer Genomics 2015

課程鏈接:http://bioinformatics-ca./bioinformatics_for_cancer_genomics_2015/

Day 1

  • Module 1: Introduction to cancer genomics

  • Module 2: Databases and Visualization Tools

Day 2

  • Module 3: Alignment and Genome rearrangements

  • Module 4: Gene Fusion Discovery

Day 3

  • Module 5: Copy Number Alterations

  • Module 6: Somatic Mutations

Day 4

  • Module 7: Gene Expression Profiling

  • Module 8: Variants to Pathways

Day 5

Network Analysis using Reactome FI

Pathway and Network Analysis of Omics Data 2015

課程鏈接:http://bioinformatics-ca./pathway_and_network_analysis_2015/

Day 1

  • Module 1: Introduction to Pathway and Network Analysis

  • Module 2: Finding over-represented pathways in gene lists

  • Module 3: Cytoscape Intro, Demo and Enrichment Maps

Day 2

  • Module 4: Depth on Pathway and Network Analysis

  • Module 5: Gene Function Prediction

Day 3

  • Module 6: Gene Regulation Network Analysis

Informatics for RNA-Seq Analysis 2015

課程鏈接:http://bioinformatics-ca./rnaseq_analysis_2015/

Day 1

  • Module 1: Introduction to RNA sequencing and analysis

  • Module 2: RNA-seq alignment and visualization

Day 2

  • Module 3: Expression and Differential Expression

  • Module 4: Isoform discovery and alternative expression

Informatics on High-Throughput Data 2015

課程鏈接:http://bioinformatics-ca./high-throughput_sequencing_2015/

Day 1

  • Module 1: Overview of HT-sequencing & Cloud Computing

  • Module 2: Reference-guided Genome Alignment

  • Module 3: Data Visualization

  • Module 4: De Novo Assembly

Day 2

  • Module 5: Small variant calling & annotation

  • Module 6: Structural variation calling

  • Module 7: Bringing it all Together: Galaxy

Informatics and Statistics for Metabolomics 2015

課程鏈接:http://bioinformatics-ca./informatics_and_statistics_for_metabolomics_2015/

Day 1

  • Module 1: Introduction to Metabolomics

  • Module 2: Software for Metabolite ID and Quantification

  • Module 3: Databases for Chemical, Spectral and bIological Data

Day 2

  • Module 4: Backgrounder in Statistics

  • Module 5: MetaboAnalyst

  • Module 6: Future of Metabolomics

2013 主要是用 R 分析芯片數(shù)據(jù)和流式細(xì)胞數(shù)據(jù)

Microarray Data Analysis

課程鏈接是:
http://bioinformatics-ca./microarrays_2013/

Day 1

  • Module 1: Introduction to Microarrays and R
    Lecture:
    Module 1 pdf
    Module 1 ppt
    Module 1 mp4
    Lab Practical:
    Modules 1-3 Lab questions

  • Module 2: Quality Control of Microarrays
    Lecture:
    Module 2 pdf?
    Module 2? ppt
    Module 2? mp4
    Lab Practical:
    Modules 1-3 Lab questions
    Day 1 analysis script

Day 2

  • Module 3: Statistical Analysis
    Lecture:
    Module 3? pdf
    Module 3? ppt
    Module 3? mp4
    Clustering Slides?
    Lab Practical:
    Modules 1-3 Lab questions
    Status of R script at 11:55am
    Status of R script at 12:33pm
    Status of R script at 4:24pm
    R script with MAS5

  • Module 4: Beyond the Microarray Experiment
    Lecture:
    Module 4 pdf
    Module 4 ppt
    Module 4 mp4

Flow Cytometry Data Analysis using R

課程鏈接是:
http://bioinformatics-ca./flow_cytometry_2013/

Day 1

  • Module 1: Introduction to Flow Cytometry Analysis in R
    Lecture:
    Module 1 pdf
    Module 1 mp4

  • Module 2: Exploring FCM data in R
    Lecture:
    Module 2 pdf?
    Module 2? mp4
    Lab Practical:
    Module 2 Lab
    PlottingReference.R - reference, summary and tutorial for plot functions in R.

  • Module 3: Preprocessing and Quality Assurance of FCM Data
    Lecture:
    Module 3? pdf
    Module 3? mp4
    Lab Practical:
    Module 3 Lab

Day 2

  • Module 4: Automated Cell Population Identification
    Lecture:
    Module 4? pdf
    Module 4? mp4

  • Module 5: 1D Automated Gating
    Lecture:
    Module 5? pdf
    Module 5? mp4
    Lab Practical:
    Module 5 Lab

  • Module 6: Additional FCM Tools
    Lecture:
    Module 6 pdf?
    Module 6 mp4

    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多