久久国产成人av_抖音国产毛片_a片网站免费观看_A片无码播放手机在线观看,色五月在线观看,亚洲精品m在线观看,女人自慰的免费网址,悠悠在线观看精品视频,一级日本片免费的,亚洲精品久,国产精品成人久久久久久久

分享

AI面臨產(chǎn)業(yè)大考:落地雖難,但產(chǎn)業(yè)化路徑已日漸清晰

 腦極體 2021-01-06

近期,,國際咨詢公司Gartner 將“AI工程化”列為2021年度九大技術(shù)趨勢之一,,這也是繼去年“AI民主化”入榜后,Gartner再次對AI技術(shù)做出預(yù)判,。

作為AI 民主化技術(shù)趨勢報告的主筆分析師,,Gartner高級研究總監(jiān)呂俊寬認(rèn)為:這兩大趨勢的核心都是讓AI逐步走向產(chǎn)業(yè)。從案例式的單點(diǎn)項目,,到千行萬業(yè)的規(guī)模應(yīng)用,,AI走向產(chǎn)業(yè)其實(shí)包含了兩層含義:一是AI可以用規(guī)模化生產(chǎn)的方式來降低產(chǎn)業(yè)使用門檻,,使技術(shù)成本可接受,,即“AI民主化”;二是AI可以與具體的產(chǎn)業(yè)場景相融合,,達(dá)成可靠,、可見、可信的良性收益,,即“AI工程化”,。

但對于大部分人和企業(yè)來說,“未來所有公司都是AI公司”的愿景并不容易實(shí)現(xiàn),,從“技術(shù)概念”到產(chǎn)業(yè)落地,,中間還橫亙著廣袤而空曠的未知地帶。

今天,,大家都希望AI會如同“水電煤”一樣推動第四次工業(yè)革命來到我們身邊,,但真正惠及所有企業(yè),,讓各行業(yè)都能加上AI這個內(nèi)核,仍舊任重而道遠(yuǎn),。

自2018年初,,Google發(fā)布Cloud AutoML至今,AutoML成為了微軟,、Facebook,、AWS、BAT等巨頭爭相布局的重心,,Gartner同時也將AutoML看做是AI產(chǎn)業(yè)化進(jìn)程中不可或缺的關(guān)鍵要素,。AutoML因何成為了巨頭們的“新寵”,它又在推動“AI民主化”和“AI工程化”中充當(dāng)了什么角色,?

AI落地難成共識

但產(chǎn)業(yè)化之路已日漸清晰

今天,,AI為各行各業(yè)帶來了效率提升、價值增長,,讓所有人都看到了AI的價值和潛力,。伴隨著AI技術(shù)的日臻成熟,AI正在快速進(jìn)入“工業(yè)化”階段,。但人才缺失,、實(shí)施復(fù)雜、周期過長,、成果過高等客觀因素,,也造成了AI難產(chǎn)的局面。

想讓AI真正的釋放價值,,或許可以從煤的發(fā)展歷程中看出端倪,。

19世紀(jì),憑借煤炭能源的挖掘,,英國迅速創(chuàng)造了一個令世界瞠目結(jié)舌的工業(yè)社會,,一躍成為世界霸主。除了儲煤量大以外,,其中最關(guān)鍵便是實(shí)現(xiàn)了煤產(chǎn)業(yè)化,。

具體表現(xiàn)為三點(diǎn):

1.提升了應(yīng)用效率:蒸汽機(jī)等高效率工具的發(fā)明與普及,讓煤這一能源得以高效,、規(guī)?;膽?yīng)用。

2.完善的基礎(chǔ)設(shè)施:鐵路,、運(yùn)河等的建設(shè),,讓煤炭能夠從礦區(qū)被運(yùn)往更具商業(yè)價值的產(chǎn)業(yè)帶。

3.打造產(chǎn)業(yè)帶:人才,、工具、市場,緊密結(jié)合在技術(shù)半徑內(nèi),,形成產(chǎn)業(yè)帶,讓高效生產(chǎn)成為可能,。

正是這些鋪陳,才讓煤得以真正成為工業(yè)革命中“動力和文明”(艾默生語)的象征。

如今,AI正有機(jī)會像煤一樣,,給人類社會帶來天翻地覆的變化,這就讓AI滿足全社會規(guī)?;瘧?yīng)用的能力,,變得格外重要。在這一過程中,,同樣少不了“蒸汽機(jī)”、“鐵軌”和產(chǎn)業(yè)帶,。

AutoML讓AI價值躍點(diǎn)

在瓦特改造蒸汽機(jī)之前,,英國煤礦普遍使用的是紐科門蒸汽機(jī),需要消耗大量的煤來維持運(yùn)轉(zhuǎn),,也讓礦區(qū)工人們不得不在嚴(yán)酷的環(huán)境中工作,。改造后,新的蒸汽能效提升了四倍之多,,從而讓煤進(jìn)入了高效利用時代,,也讓筋疲力盡的體力勞動者們得到了解脫。

AutoML的價值與蒸汽機(jī)一樣,。在最新發(fā)布的《AI for Everyone——AutoML 引領(lǐng)AI民主化之路》白皮書中,,Gartner將其視為降低門檻、提升效率的利器,。

簡單來說,,AutoML(自動機(jī)器學(xué)習(xí))就是可以讓企業(yè)或個人不用寫一行代碼,就訓(xùn)練出一個企業(yè)級的機(jī)器學(xué)習(xí)模型的技術(shù),。只需要按照說明,,把訓(xùn)練數(shù)據(jù)都拖進(jìn)AutoML系統(tǒng)里面,很快一個適用于自身應(yīng)用的機(jī)器學(xué)習(xí)模型就訓(xùn)練好了,。讓機(jī)器學(xué)習(xí)中最耗時和最難的工作——數(shù)據(jù)清洗,、特征工程,變得輕松不少,,甚至無需考慮了解AI復(fù)雜的原理,。

對于渴望規(guī)模化,、高效率應(yīng)用AI的企業(yè)來說,,這意味著不需要從源頭去設(shè)計一個神經(jīng)網(wǎng)絡(luò)或是進(jìn)行復(fù)雜的調(diào)參,,最大程度地降低了機(jī)器學(xué)習(xí)的編程工作量,節(jié)約了AI開發(fā)時間,;同時也意味著對專業(yè)數(shù)據(jù)科學(xué)家和算法工程師的依賴程度也有所降低,,緩解與科技巨頭“搶人才”的困擾。在自動駕駛,、金融風(fēng)控,、工業(yè)制造等多個領(lǐng)域中,使用AutoML搭建的模型效果甚至超越了大多數(shù)算法工程師,。

于是,,我們看到了越多越多的企業(yè)和開發(fā)者加入到了AI產(chǎn)業(yè)化的行列中,以百度為例,,其EasyDL已擁有70多萬開發(fā)者,,覆蓋了20多個場景。更為欣喜的是,,我們看到了沒有一點(diǎn)AI甚至是編程背景的人將AI物盡其用:婦產(chǎn)醫(yī)院的醫(yī)生基于AI獨(dú)角獸第四范式的AutoML技術(shù)及產(chǎn)品,,建立了新生兒體重預(yù)測和胎膜早破的預(yù)測模型,為產(chǎn)婦生產(chǎn)方案的制定提供更多依據(jù),,這在學(xué)術(shù)界首次證明了大氣壓與胎膜早破之間的緊密相關(guān)性,,填補(bǔ)了這一領(lǐng)域的空白。

這些案例意味著AI開始進(jìn)入低門檻,、低成本,、泛用性的工業(yè)生產(chǎn)階段,得以快速落地企業(yè),,釋放技術(shù)價值,。

據(jù)Gartner的預(yù)測,2023年,,40%的開發(fā)團(tuán)隊會使用自動化機(jī)器學(xué)習(xí)服務(wù)來構(gòu)建為其應(yīng)用軟件添加AI功能的模型,,而2019年這一比例不到2%。到2025年,,AI將使50%的數(shù)據(jù)科學(xué)家活動實(shí)現(xiàn)自動化,,從而緩解人才嚴(yán)重短缺問題。

這也是為什么,,Gartner 認(rèn)為AutoML是引領(lǐng)AI民主化,,實(shí)現(xiàn)“AI for Everyone”的關(guān)鍵力量。

鋪設(shè)鐵軌:通往產(chǎn)業(yè)智能的通衢

AutoML提升了AI的效能,,但智能怎么才能夠抵達(dá)產(chǎn)業(yè)端,,卻是一個大問題。因此也吸引了不少巨頭和創(chuàng)業(yè)公司爭相布局,它們的存在就像是鐵軌與運(yùn)河,,將源源不斷的技術(shù)能量運(yùn)輸?shù)疆a(chǎn)業(yè)土壤中去,。

目前來看,AutoML平臺主要分為以下幾大類:

第一種,,以谷歌,、微軟、亞馬遜,、百度等為代表的頭部AI巨頭,,具有較強(qiáng)的AI實(shí)力,可以提供從算法到流程全自動化的工具支持,。

第二種,,是一些開源技術(shù)平臺或組織。優(yōu)勢是靈活,、開放,,比如在谷歌發(fā)布AutoML之前,2013年就出現(xiàn)了可以自動選擇模型并選擇超參數(shù)的AutoWEKA,。

第三種則是一些技術(shù)/算法公司,,除了AutoML工具之外,還會面向企業(yè)提供數(shù)據(jù)策略,、業(yè)務(wù)咨詢等服務(wù)。

那么,,它們都在向產(chǎn)業(yè)界提供哪些具體能力呢,?

首先是平臺和工具。比如谷歌推出的Google Cloud AutoML覆蓋了圖像分類,,文本分類以及機(jī)器翻譯領(lǐng)域,,比如用戶只需要上傳圖片到AutoML Vision上,就可以訓(xùn)練和部署一個計算機(jī)視覺模型,。今年還展示了能夠自動創(chuàng)建計算機(jī)視覺系統(tǒng)NASNet的能力,,可以幫助自動駕駛或智能機(jī)器人開發(fā)。

微軟差不多和谷歌同時期發(fā)布了自己的AutoML平臺,,涵蓋圖像,、視頻、文本和語音等各個領(lǐng)域,。

國內(nèi)比較領(lǐng)先的如百度的EasyDL,,用戶可以在上面開展圖像分類、物體檢測,、圖像分割,、文本分類、視頻分類,、聲音分類等任務(wù),。代表廠商第四范式,,打造的自動化機(jī)器學(xué)習(xí)平臺Sage Hypercycle ML,也面向金融,、零售,、醫(yī)療、制造,、能源等行業(yè)提供了多種封裝好的AutoML算法及全流程開發(fā)工具,。

其次是服務(wù)和定制。近兩年來,,AutoML領(lǐng)域也越來越注重定制化服務(wù),。比如今年1月,微軟就針對視覺能力打造了自動化平臺Microsoft Custom Vision Services(微軟定制視覺服務(wù)),。谷歌也與產(chǎn)業(yè)端合作,,利用谷歌云的AutoML Vision技術(shù)創(chuàng)建了能理解古埃及文字的工具Fabricius,來達(dá)到普及AI的效果,。國內(nèi)如第四范式也提出了“AutoML全棧算法”從感知,、認(rèn)知、決策三個關(guān)鍵維度幫助企業(yè)提升關(guān)鍵場景的決策水平,,同時針對不同行業(yè),、不同技術(shù)能力的企業(yè)來有的放矢地提供服務(wù)。

如果說AutoML平臺和工具降低了AI的應(yīng)用門檻,,加速了“AI民主化”的進(jìn)程,,那么服務(wù)導(dǎo)向的出現(xiàn),則讓人們看到“AI工程化”趨勢的端倪,。

這一變化背后的原因也很簡單,,回到第一次工業(yè)革命時期,我們會發(fā)現(xiàn)基礎(chǔ)設(shè)施的鋪設(shè)往往需要因地制宜,,以龐大的工程將運(yùn)河與鐵軌不斷延伸到東海岸,。AI落地產(chǎn)業(yè)自然也不是一種平臺或工具集就能夠完成的。

一方面,,許多巨頭云廠商在推出AutoML平臺的同時,,也希望企業(yè)用戶與自己的開發(fā)生態(tài)相捆綁,比如谷歌就要求必須在谷歌云上部署相關(guān)模型和網(wǎng)絡(luò),,這對于無法或無意使用谷歌云的用戶來說就成了限制,。

同時,應(yīng)用AI更是一個千變?nèi)f化的復(fù)雜工程,。要讓毫無機(jī)器學(xué)習(xí)經(jīng)驗(yàn)的個人和企業(yè)借助AutoML用上AI,,需要與產(chǎn)業(yè)應(yīng)用場景的深度適配,同時解決數(shù)據(jù)收集、數(shù)據(jù)清理,、打通數(shù)據(jù)孤島等等障礙,,才能讓AI在業(yè)務(wù)端跑起來。這些都需要懂業(yè)務(wù)的行業(yè)人士和算法人員來共同探討,、磨合,,去建立符合產(chǎn)業(yè)需求的技術(shù)管道。

只有一個充分考慮不同產(chǎn)業(yè)地帶客觀環(huán)境與具體訴求的“交通網(wǎng)絡(luò)”,,才能驅(qū)動AI正在走到產(chǎn)業(yè)那邊去,。

靠近價值:AutoML產(chǎn)業(yè)帶的興起

對于企業(yè)來說,應(yīng)該如何考量和適時使用AutoML來提升“AI產(chǎn)能”呢,?

從企業(yè)視角出發(fā),,我們認(rèn)為有三個關(guān)鍵要素是需要注意的:

1.是否具有AutoML落地的配套服務(wù)能力。

每個廠商期待的自動化,、智能化是不一樣的,,企業(yè)在選擇AutoML平臺時需要考察其服務(wù)能力與背景。

呂俊寬認(rèn)為,,對于企業(yè)來說,,如何幫助自己提高業(yè)務(wù)價值是關(guān)鍵,但不是每家企業(yè)都能像互聯(lián)網(wǎng)巨頭一樣能夠讓AI與業(yè)務(wù)深度耦合,,所以需要AI廠商有強(qiáng)大的服務(wù)能力支撐企業(yè)客戶兌現(xiàn)AI的價值,。對于AI企業(yè)來說,想要服務(wù)好企業(yè),,對產(chǎn)業(yè)服務(wù)的重視會直接決定其技術(shù)上的投入程度,,對產(chǎn)業(yè)迫切需要的能力亦需要快速迭代;同時應(yīng)當(dāng)深入了解客戶的業(yè)務(wù)場景,,幫助其提升關(guān)鍵的業(yè)務(wù)指標(biāo)和表現(xiàn)。有的業(yè)務(wù)適合上云,、有的適合產(chǎn)品化服務(wù),,AI規(guī)模化應(yīng)用后如何解決計算成本上升問題,,是否需要自建AI系統(tǒng)等等,,這些需要在不同選項里找到平衡點(diǎn)。

Gartner的AutoML白皮書也指出,,頂尖的AutoML算法相當(dāng)于AI應(yīng)用構(gòu)建的“引擎”,。而AI應(yīng)用的開發(fā)是一項非常復(fù)雜的精細(xì)化工程,涉及諸多環(huán)節(jié),。假如沒有一套完整的AI開發(fā)工具,,各個環(huán)節(jié)就會變成彼此割裂、互不兼容的“孤島”,不僅導(dǎo)致科學(xué)家在開發(fā)過程中疲于奔命,,也會讓AI規(guī)?;兂伞芭萦啊薄V挥写蛟旎贏utoML算法“引擎”的“自動化工廠”,,實(shí)現(xiàn)全面產(chǎn)品化,,才能真正推動AI產(chǎn)業(yè)化落地。

擅長于個人C端市場的谷歌在AutoML上的投入程度和研發(fā)頻率相對于其他子業(yè)務(wù)(如DeepMind)就要少的多,,更重視極客和工程師思維,;國內(nèi)如百度在推廣EasyDL時,也十分重視對開發(fā)者和企業(yè)的幫助,,和服務(wù)體系的打造,,支持初中生、中年個體戶,、電網(wǎng)企業(yè)等零門檻用上AI,;第四范式的策略則更加細(xì)致,根據(jù)不同技術(shù)成熟度的企業(yè),,提供不同應(yīng)用的AI產(chǎn)品和方法論,,讓AI產(chǎn)品得以更好使用和落地。例如,,面對想要快速驗(yàn)證AI效果,、快速落地的客戶,可以選擇Sage HyperCycle ML,,某金融企業(yè)就用這種方式讓毫無AI模型構(gòu)建經(jīng)驗(yàn)的金融企業(yè)在幾小時內(nèi)完成建模工作,;而面對體量大、場景多的客戶,,第四范式也可通過先知等平臺化產(chǎn)品,,讓客戶自主、規(guī)?;?、低門檻落地AI應(yīng)用,同時,,也嵌入了相應(yīng)的AI服務(wù)支撐體系,。

2.如何以較低的成本得到較好的效果。

如果說“AI民主化”是讓更多人了解和感受到AI和AutoML能做什么,,那么“AI工程化”則要求AI規(guī)?;涞氐耐瑫r,還能夠帶來更系統(tǒng)性的業(yè)務(wù)價值,。

第四范式副總裁,、主任科學(xué)家涂威威告訴我們,,企業(yè)在使用AutoML時有三個考量點(diǎn):業(yè)務(wù)收益和效果、成本支出,、解決問題的范圍,,只有這三點(diǎn)都滿足企業(yè)端的要求,才能讓AutoML切實(shí)有效地幫助AI加速規(guī)?;瘧?yīng)用進(jìn)程,。

比如算法上需要提升效果,給業(yè)務(wù)帶來實(shí)際增長點(diǎn),,讓模型面對各種真實(shí)復(fù)雜情況都能快速識別,,而非只是停留在實(shí)驗(yàn)室階段;

許多企業(yè)也會面臨一個問題,,就是在線下效果好,,而部署到真實(shí)環(huán)境中,效果大打折扣,。這就需要注重線上線下數(shù)據(jù)一致性的問題,,并做出相應(yīng)的優(yōu)化;

成本方面,,AI如何跟現(xiàn)有業(yè)務(wù)結(jié)合,、如何部署到環(huán)境中去,計算資源怎么解決,,都是需要去考慮的,。AutoML在幫助AI規(guī)模化落地的同時,,也帶來了巨大的算力消耗,,如果采用業(yè)界常用的GPU甚至是TPU,絕大多數(shù)的企業(yè)都是負(fù)擔(dān)不起的,。因此,,為了讓AI更好的規(guī)模化,,還需要軟硬件協(xié)同優(yōu)化,,讓部署AI的成本變成“可負(fù)擔(dān)”。

3.是否具有擴(kuò)展性,。

我們知道,技術(shù)產(chǎn)品和架構(gòu)總是會不斷迭代更新的,,如果需要全盤推倒重來,,無疑會給企業(yè)帶來沒有必要的損失,這也讓很多企業(yè)對AutoML等新型生產(chǎn)力工具望而卻步,。

這就需要AutoML平臺和廠商在一開始就考慮到技術(shù)的擴(kuò)展性并進(jìn)行應(yīng)對,。

比如百度EasyDL就借助百度大腦的全棧AI能力實(shí)現(xiàn)底層技術(shù)的全面部署與融合,;第四范式通過技術(shù)解決模型的自學(xué)習(xí)問題,讓動態(tài)模型可以根據(jù)業(yè)務(wù)變化而進(jìn)化,,進(jìn)行自動化迭代,。同時,第四范式還將AutoML相關(guān)架構(gòu),、技術(shù)抽象成了操作系統(tǒng),,這就從底層核心將技術(shù)框架穩(wěn)定下來,讓各項數(shù)據(jù)和應(yīng)用可以被標(biāo)準(zhǔn)化管理,,后續(xù)運(yùn)維也可以通過系統(tǒng)層來應(yīng)對變化,,從而讓企業(yè)可以建立更長期的AI戰(zhàn)略,不會因?yàn)榧夹g(shù)變化而讓業(yè)務(wù)受到波動,。

當(dāng)企業(yè),、技術(shù)、平臺等等都匯聚在一起,,形成了完整的AutoML產(chǎn)業(yè)帶,,生態(tài)也就開始真正建立起來,最終拉開一個恢弘的產(chǎn)業(yè)智能時代大幕,。

從這一刻,,寫下未來

如果說是煤工業(yè)的崛起,帶領(lǐng)人類穿越了漫長的工業(yè)童年時代,,開始了一個史無前例的時代,,那么隨著國家戰(zhàn)略的推動和產(chǎn)業(yè)需求的全面爆發(fā),AutoML帶來的產(chǎn)業(yè)智能紅利是否會像煤炭一樣,,引發(fā)一場新的產(chǎn)業(yè)革命,?

AI的產(chǎn)業(yè)大考暴露了人才短缺、成本高昂等問題,,又推動了AutoML這樣解決方法的產(chǎn)生,,由此帶來的AI民主化和工程化浪潮,正在將全社會帶入智能變革的疆域,。

其中最值得注目的,,是中國企業(yè)表現(xiàn)出了對科技前所未有的饑餓感,依靠技術(shù)來找尋業(yè)務(wù)增長點(diǎn),,急切地尋找技術(shù)場景和落地,,這些積極的做法都讓AI的紅利更早、更快地生長在這片土地上,。

    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多