久久国产成人av_抖音国产毛片_a片网站免费观看_A片无码播放手机在线观看,色五月在线观看,亚洲精品m在线观看,女人自慰的免费网址,悠悠在线观看精品视频,一级日本片免费的,亚洲精品久,国产精品成人久久久久久久

分享

python中重要的模塊

 文炳春秋 2020-09-08

一直對asyncio這個庫比較感興趣,,畢竟這是官網也非常推薦的一個實現(xiàn)高并發(fā)的一個模塊,python也是在python 3.4中引入了協(xié)程的概念,。也通過這次整理更加深刻理解這個模塊的使用

asyncio 是干什么的,?

  • 異步網絡操作
  • 并發(fā)
  • 協(xié)程

python3.0時代,,標準庫里的異步網絡模塊:select(非常底層) python3.0時代,第三方異步網絡庫:Tornado python3.4時代,,asyncio:支持TCP,子進程

現(xiàn)在的asyncio,,有了很多的模塊已經在支持:aiohttp,aiodns,aioredis等等 https://github.com/aio-libs 這里列出了已經支持的內容,并在持續(xù)更新

當然到目前為止實現(xiàn)協(xié)程的不僅僅只有asyncio,tornado和gevent都實現(xiàn)了類似功能

關于asyncio的一些關鍵字的說明:

  • event_loop 事件循環(huán):程序開啟一個無限循環(huán),,把一些函數(shù)注冊到事件循環(huán)上,,當滿足事件發(fā)生的時候,調用相應的協(xié)程函數(shù)

  • coroutine 協(xié)程:協(xié)程對象,,指一個使用async關鍵字定義的函數(shù),,它的調用不會立即執(zhí)行函數(shù),而是會返回一個協(xié)程對象,。協(xié)程對象需要注冊到事件循環(huán),,由事件循環(huán)調用。

  • task 任務:一個協(xié)程對象就是一個原生可以掛起的函數(shù),,任務則是對協(xié)程進一步封裝,,其中包含了任務的各種狀態(tài)

  • future: 代表將來執(zhí)行或沒有執(zhí)行的任務的結果。它和task上沒有本質上的區(qū)別

  • async/await 關鍵字:python3.5用于定義協(xié)程的關鍵字,,async定義一個協(xié)程,,await用于掛起阻塞的異步調用接口。

看了上面這些關鍵字,,你可能扭頭就走了,,其實一開始了解和研究asyncio這個模塊有種抵觸,自己也不知道為啥,,這也導致很長一段時間,,這個模塊自己也基本就沒有關注和使用,但是隨著工作上用python遇到各種性能問題的時候,,自己告訴自己還是要好好學習學習這個模塊,。

定義一個協(xié)程

復制代碼
import time
import asyncio


now = lambda : time.time()


async def do_some_work(x):
    print("waiting:", x)

start = now()
# 這里是一個協(xié)程對象,這個時候do_some_work函數(shù)并沒有執(zhí)行
coroutine = do_some_work(2)
print(coroutine)
#  創(chuàng)建一個事件loop
loop = asyncio.get_event_loop()
# 將協(xié)程加入到事件循環(huán)loop
loop.run_until_complete(coroutine)

print("Time:",now()-start)
復制代碼

在上面帶中我們通過async關鍵字定義一個協(xié)程(coroutine),當然協(xié)程不能直接運行,,需要將協(xié)程加入到事件循環(huán)loop中

asyncio.get_event_loop:創(chuàng)建一個事件循環(huán),,然后使用run_until_complete將協(xié)程注冊到事件循環(huán),并啟動事件循環(huán)

創(chuàng)建一個task

協(xié)程對象不能直接運行,,在注冊事件循環(huán)的時候,,其實是run_until_complete方法將協(xié)程包裝成為了一個任務(task)對象. task對象是Future類的子類,保存了協(xié)程運行后的狀態(tài),,用于未來獲取協(xié)程的結果

復制代碼
import asyncio
import time


now = lambda: time.time()


async def do_some_work(x):
    print("waiting:", x)

start = now()

coroutine = do_some_work(2)
loop = asyncio.get_event_loop()
task = loop.create_task(coroutine)
print(task)
loop.run_until_complete(task)
print(task)
print("Time:",now()-start)
復制代碼

結果為:

<Task pending coro=<do_some_work() running at /app/py_code/study_asyncio/simple_ex2.py:13>>
waiting: 2
<Task finished coro=<do_some_work() done, defined at /app/py_code/study_asyncio/simple_ex2.py:13> result=None>
Time: 0.0003514289855957031

創(chuàng)建task后,,在task加入事件循環(huán)之前為pending狀態(tài),當完成后,,狀態(tài)為finished

關于上面通過loop.create_task(coroutine)創(chuàng)建task,同樣的可以通過 asyncio.ensure_future(coroutine)創(chuàng)建task

關于這兩個命令的官網解釋: https://docs./3/library/asyncio-task.html#asyncio.ensure_future

asyncio.ensure_future(coro_or_future, *, loop=None)?
Schedule the execution of a coroutine object: wrap it in a future. Return a Task object.

If the argument is a Future, it is returned directly.

https://docs./3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop.create_task

復制代碼
AbstractEventLoop.create_task(coro)
Schedule the execution of a coroutine object: wrap it in a future. Return a Task object.

Third-party event loops can use their own subclass of Task for interoperability. In this case, the result type is a subclass of Task.

This method was added in Python 3.4.2. Use the async() function to support also older Python versions.
復制代碼

綁定回調

綁定回調,,在task執(zhí)行完成的時候可以獲取執(zhí)行的結果,,回調的最后一個參數(shù)是future對象,通過該對象可以獲取協(xié)程返回值,。

復制代碼
import time
import asyncio


now = lambda : time.time()


async def do_some_work(x):
    print("waiting:",x)
    return "Done after {}s".format(x)


def callback(future):
    print("callback:",future.result())


start = now()
coroutine = do_some_work(2)
loop = asyncio.get_event_loop()
task = asyncio.ensure_future(coroutine)
print(task)
task.add_done_callback(callback)
print(task)
loop.run_until_complete(task)

print("Time:", now()-start)
復制代碼

結果為:

復制代碼
<Task pending coro=<do_some_work() running at /app/py_code/study_asyncio/simple_ex3.py:13>>
<Task pending coro=<do_some_work() running at /app/py_code/study_asyncio/simple_ex3.py:13> cb=[callback() at /app/py_code/study_asyncio/simple_ex3.py:18]>
waiting: 2
callback: Done after 2s
Time: 0.00039196014404296875
復制代碼

通過add_done_callback方法給task任務添加回調函數(shù),,當task(也可以說是coroutine)執(zhí)行完成的時候,就會調用回調函數(shù)。并通過參數(shù)future獲取協(xié)程執(zhí)行的結果,。這里我們創(chuàng)建 的task和回調里的future對象實際上是同一個對象

阻塞和await

使用async可以定義協(xié)程對象,,使用await可以針對耗時的操作進行掛起,就像生成器里的yield一樣,,函數(shù)讓出控制權,。協(xié)程遇到await,事件循環(huán)將會掛起該協(xié)程,,執(zhí)行別的協(xié)程,,直到其他的協(xié)程也掛起或者執(zhí)行完畢,,再進行下一個協(xié)程的執(zhí)行

耗時的操作一般是一些IO操作,,例如網絡請求,文件讀取等,。我們使用asyncio.sleep函數(shù)來模擬IO操作,。協(xié)程的目的也是讓這些IO操作異步化。

復制代碼
import asyncio
import time



now = lambda :time.time()

async def do_some_work(x):
    print("waiting:",x)
    # await 后面就是調用耗時的操作
    await asyncio.sleep(x)
    return "Done after {}s".format(x)


start = now()

coroutine = do_some_work(2)
loop = asyncio.get_event_loop()
task = asyncio.ensure_future(coroutine)
loop.run_until_complete(task)

print("Task ret:", task.result())
print("Time:", now() - start)
復制代碼

在await asyncio.sleep(x),,因為這里sleep了,,模擬了阻塞或者耗時操作,這個時候就會讓出控制權,。 即當遇到阻塞調用的函數(shù)的時候,,使用await方法將協(xié)程的控制權讓出,以便loop調用其他的協(xié)程。

并發(fā)和并行

并發(fā)指的是同時具有多個活動的系統(tǒng)

并行值得是用并發(fā)來使一個系統(tǒng)運行的更快,。并行可以在操作系統(tǒng)的多個抽象層次進行運用

所以并發(fā)通常是指有多個任務需要同時進行,,并行則是同一個時刻有多個任務執(zhí)行

下面這個例子非常形象:

并發(fā)情況下是一個老師在同一時間段輔助不同的人功課。并行則是好幾個老師分別同時輔助多個學生功課,。簡而言之就是一個人同時吃三個饅頭還是三個人同時分別吃一個的情況,,吃一個饅頭算一個任務

復制代碼
import asyncio
import time


now = lambda :time.time()


async def do_some_work(x):
    print("Waiting:",x)
    await asyncio.sleep(x)
    return "Done after {}s".format(x)

start = now()

coroutine1 = do_some_work(1)
coroutine2 = do_some_work(2)
coroutine3 = do_some_work(4)

tasks = [
    asyncio.ensure_future(coroutine1),
    asyncio.ensure_future(coroutine2),
    asyncio.ensure_future(coroutine3)
]

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))

for task in tasks:
    print("Task ret:",task.result())

print("Time:",now()-start)
復制代碼

運行結果:

復制代碼
Waiting: 1
Waiting: 2
Waiting: 4
Task ret: Done after 1s
Task ret: Done after 2s
Task ret: Done after 4s
Time: 4.004154920578003
復制代碼

總時間為4s左右。4s的阻塞時間,,足夠前面兩個協(xié)程執(zhí)行完畢,。如果是同步順序的任務,那么至少需要7s,。此時我們使用了aysncio實現(xiàn)了并發(fā),。asyncio.wait(tasks) 也可以使用 asyncio.gather(*tasks) ,前者接受一個task列表,后者接收一堆task,。

關于asyncio.gather和asyncio.wait官網的說明:

https://docs./3/library/asyncio-task.html#asyncio.gather

Return a future aggregating results from the given coroutine objects or futures.

All futures must share the same event loop. If all the tasks are done successfully, the returned future’s result is the list of results (in the order of the original sequence, not necessarily the order of results arrival). If return_exceptions is true, exceptions in the tasks are treated the same as successful results, and gathered in the result list; otherwise, the first raised exception will be immediately propagated to the returned future.

https://docs./3/library/asyncio-task.html#asyncio.wait

復制代碼
Wait for the Futures and coroutine objects given by the sequence futures to complete. Coroutines will be wrapped in Tasks. Returns two sets of Future: (done, pending).

The sequence futures must not be empty.

timeout can be used to control the maximum number of seconds to wait before returning. timeout can be an int or float. If timeout is not specified or None, there is no limit to the wait time.

return_when indicates when this function should return.
復制代碼

協(xié)程嵌套

使用async可以定義協(xié)程,,協(xié)程用于耗時的io操作,,我們也可以封裝更多的io操作過程,這樣就實現(xiàn)了嵌套的協(xié)程,,即一個協(xié)程中await了另外一個協(xié)程,,如此連接起來。

復制代碼
import asyncio
import time


now = lambda: time.time()

async def do_some_work(x):
    print("waiting:",x)
    await asyncio.sleep(x)
    return "Done after {}s".format(x)

async def main():
    coroutine1 = do_some_work(1)
    coroutine2 = do_some_work(2)
    coroutine3 = do_some_work(4)
    tasks = [
        asyncio.ensure_future(coroutine1),
        asyncio.ensure_future(coroutine2),
        asyncio.ensure_future(coroutine3)
    ]

    dones, pendings = await asyncio.wait(tasks)
    for task in dones:
        print("Task ret:", task.result())

    # results = await asyncio.gather(*tasks)
    # for result in results:
    #     print("Task ret:",result)


start = now()

loop = asyncio.get_event_loop()
loop.run_until_complete(main())
print("Time:", now()-start)
復制代碼

如果我們把上面代碼中的:

    dones, pendings = await asyncio.wait(tasks)
    for task in dones:
        print("Task ret:", task.result())

替換為:

    results = await asyncio.gather(*tasks)
    for result in results:
        print("Task ret:",result)

這樣得到的就是一個結果的列表

不在main協(xié)程函數(shù)里處理結果,,直接返回await的內容,,那么最外層的run_until_complete將會返回main協(xié)程的結果。 將上述的代碼更改為:

復制代碼
import asyncio
import time


now = lambda: time.time()

async def do_some_work(x):
    print("waiting:",x)
    await asyncio.sleep(x)
    return "Done after {}s".format(x)

async def main():
    coroutine1 = do_some_work(1)
    coroutine2 = do_some_work(2)
    coroutine3 = do_some_work(4)
    tasks = [
        asyncio.ensure_future(coroutine1),
        asyncio.ensure_future(coroutine2),
        asyncio.ensure_future(coroutine3)
    ]
    return await asyncio.gather(*tasks)

start = now()

loop = asyncio.get_event_loop()
results = loop.run_until_complete(main())
for result in results:
    print("Task ret:",result)

print("Time:", now()-start)
復制代碼

或者返回使用asyncio.wait方式掛起協(xié)程,。

將代碼更改為:

復制代碼
import asyncio
import time


now = lambda: time.time()

async def do_some_work(x):
    print("waiting:",x)
    await asyncio.sleep(x)
    return "Done after {}s".format(x)

async def main():
    coroutine1 = do_some_work(1)
    coroutine2 = do_some_work(2)
    coroutine3 = do_some_work(4)
    tasks = [
        asyncio.ensure_future(coroutine1),
        asyncio.ensure_future(coroutine2),
        asyncio.ensure_future(coroutine3)
    ]
    return await asyncio.wait(tasks)

start = now()

loop = asyncio.get_event_loop()
done,pending = loop.run_until_complete(main())
for task in done:
    print("Task ret:",task.result())

print("Time:", now()-start)
復制代碼

也可以使用asyncio的as_completed方法

復制代碼
import asyncio
import time


now = lambda: time.time()

async def do_some_work(x):
    print("waiting:",x)
    await asyncio.sleep(x)
    return "Done after {}s".format(x)

async def main():
    coroutine1 = do_some_work(1)
    coroutine2 = do_some_work(2)
    coroutine3 = do_some_work(4)
    tasks = [
        asyncio.ensure_future(coroutine1),
        asyncio.ensure_future(coroutine2),
        asyncio.ensure_future(coroutine3)
    ]
    for task in asyncio.as_completed(tasks):
        result = await task
        print("Task ret: {}".format(result))

start = now()

loop = asyncio.get_event_loop()
loop.run_until_complete(main())
print("Time:", now()-start)
復制代碼

從上面也可以看出,,協(xié)程的調用和組合非常靈活,主要體現(xiàn)在對于結果的處理:如何返回,,如何掛起

協(xié)程的停止

future對象有幾個狀態(tài):

  • Pending
  • Running
  • Done
  • Cacelled

創(chuàng)建future的時候,,task為pending,事件循環(huán)調用執(zhí)行的時候當然就是running,,調用完畢自然就是done,,如果需要停止事件循環(huán),就需要先把task取消,??梢允褂胊syncio.Task獲取事件循環(huán)的task

復制代碼
import asyncio
import time


now = lambda :time.time()


async def do_some_work(x):
    print("Waiting:",x)
    await asyncio.sleep(x)
    return "Done after {}s".format(x)

coroutine1 =do_some_work(1)
coroutine2 =do_some_work(2)
coroutine3 =do_some_work(2)

tasks = [
    asyncio.ensure_future(coroutine1),
    asyncio.ensure_future(coroutine2),
    asyncio.ensure_future(coroutine3),
]

start = now()

loop = asyncio.get_event_loop()
try:
    loop.run_until_complete(asyncio.wait(tasks))
except KeyboardInterrupt as e:
    print(asyncio.Task.all_tasks())
    for task in asyncio.Task.all_tasks():
        print(task.cancel())
    loop.stop()
    loop.run_forever()
finally:
    loop.close()

print("Time:",now()-start)
復制代碼

啟動事件循環(huán)之后,馬上ctrl+c,,會觸發(fā)run_until_complete的執(zhí)行異常 KeyBorardInterrupt,。然后通過循環(huán)asyncio.Task取消future??梢钥吹捷敵鋈缦拢?/p>

復制代碼
Waiting: 1
Waiting: 2
Waiting: 2
^C{<Task finished coro=<do_some_work() done, defined at /app/py_code/study_asyncio/simple_ex10.py:13> result='Done after 1s'>, <Task pending coro=<do_some_work() running at /app/py_code/study_asyncio/simple_ex10.py:15> wait_for=<Future pending cb=[Task._wakeup()]> cb=[_wait.<locals>._on_completion() at /usr/local/lib/python3.5/asyncio/tasks.py:428]>, <Task pending coro=<do_some_work() running at /app/py_code/study_asyncio/simple_ex10.py:15> wait_for=<Future pending cb=[Task._wakeup()]> cb=[_wait.<locals>._on_completion() at /usr/local/lib/python3.5/asyncio/tasks.py:428]>, <Task pending coro=<wait() running at /usr/local/lib/python3.5/asyncio/tasks.py:361> wait_for=<Future pending cb=[Task._wakeup()]>>}
False
True
True
True
Time: 1.0707225799560547
復制代碼

True表示cannel成功,,loop stop之后還需要再次開啟事件循環(huán),最后在close,,不然還會拋出異常

循環(huán)task,,逐個cancel是一種方案,可是正如上面我們把task的列表封裝在main函數(shù)中,,main函數(shù)外進行事件循環(huán)的調用,。這個時候,main相當于最外出的一個task,,那么處理包裝的main函數(shù)即可,。

不同線程的事件循環(huán)

很多時候,我們的事件循環(huán)用于注冊協(xié)程,,而有的協(xié)程需要動態(tài)的添加到事件循環(huán)中,。一個簡單的方式就是使用多線程。當前線程創(chuàng)建一個事件循環(huán),,然后在新建一個線程,,在新線程中啟動事件循環(huán),。當前線程不會被block。

復制代碼
import asyncio
from threading import Thread
import time

now = lambda :time.time()

def start_loop(loop):
    asyncio.set_event_loop(loop)
    loop.run_forever()

def more_work(x):
    print('More work {}'.format(x))
    time.sleep(x)
    print('Finished more work {}'.format(x))

start = now()
new_loop = asyncio.new_event_loop()
t = Thread(target=start_loop, args=(new_loop,))
t.start()
print('TIME: {}'.format(time.time() - start))

new_loop.call_soon_threadsafe(more_work, 6)
new_loop.call_soon_threadsafe(more_work, 3)
復制代碼

啟動上述代碼之后,,當前線程不會被block,,新線程中會按照順序執(zhí)行call_soon_threadsafe方法注冊的more_work方法, 后者因為time.sleep操作是同步阻塞的,,因此運行完畢more_work需要大致6 + 3

新線程協(xié)程

復制代碼
import asyncio
import time
from threading import Thread

now = lambda :time.time()


def start_loop(loop):
    asyncio.set_event_loop(loop)
    loop.run_forever()

async def do_some_work(x):
    print('Waiting {}'.format(x))
    await asyncio.sleep(x)
    print('Done after {}s'.format(x))

def more_work(x):
    print('More work {}'.format(x))
    time.sleep(x)
    print('Finished more work {}'.format(x))

start = now()
new_loop = asyncio.new_event_loop()
t = Thread(target=start_loop, args=(new_loop,))
t.start()
print('TIME: {}'.format(time.time() - start))

asyncio.run_coroutine_threadsafe(do_some_work(6), new_loop)
asyncio.run_coroutine_threadsafe(do_some_work(4), new_loop)
復制代碼

上述的例子,,主線程中創(chuàng)建一個new_loop,然后在另外的子線程中開啟一個無限事件循環(huán),。 主線程通過run_coroutine_threadsafe新注冊協(xié)程對象,。這樣就能在子線程中進行事件循環(huán)的并發(fā)操作,同時主線程又不會被block,。一共執(zhí)行的時間大概在6s左右,。

    本站是提供個人知識管理的網絡存儲空間,所有內容均由用戶發(fā)布,,不代表本站觀點,。請注意甄別內容中的聯(lián)系方式、誘導購買等信息,,謹防詐騙,。如發(fā)現(xiàn)有害或侵權內容,,請點擊一鍵舉報,。
    轉藏 分享 獻花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多