數(shù)據(jù)采集,又稱數(shù)據(jù)獲取,,是利用一種裝置,,從系統(tǒng)外部采集數(shù)據(jù)并輸入到系統(tǒng)內(nèi)部的一個接口,。數(shù)據(jù)采集技術廣泛引用在各個領域。比如攝像頭,,麥克風,,都是數(shù)據(jù)采集工具。被采集數(shù)據(jù)是已被轉(zhuǎn)換為電訊號的各種物理量,,如溫度,、水位、風速,、壓力等,,可以是模擬量,也可以是數(shù)字量,。在互聯(lián)網(wǎng)行業(yè)快速發(fā)展的今天,,數(shù)據(jù)采集已經(jīng)被廣泛應用于互聯(lián)網(wǎng)及分布式領域,數(shù)據(jù)采集領域已經(jīng)發(fā)生了重要的變化,。 而在數(shù)據(jù)采集中存在著各種噪聲,。濾除噪聲的方法有很多種,既有數(shù)字濾波器,,也有模擬濾波器,。這里我們采用了基于單片機和C語言來設計并開發(fā)數(shù)字濾波系統(tǒng)。 我們針對于單片機數(shù)據(jù)采集系統(tǒng)中經(jīng)常出現(xiàn)的隨機干擾,,通過手動輸入來模擬數(shù)據(jù)采集過程,,驗證了幾種使用較為普遍的克服隨機干擾的單片機數(shù)字濾波算法,并給出了相應的C程序,,尤其對中位值濾波和中位值平均濾波算法程序進行了改進,。同時也對這幾種濾波算法進行了比較,并指出了每一種算法的具體適用范圍和注意事項,。另外我們使用了 proteus進行仿真驗證這幾種濾波方法,。另外我們還使用了AD和DA來采集及輸出數(shù)據(jù)。 1 數(shù)字濾波設計原理 這里有很多種數(shù)字濾波方法,,我們見選用其中幾種來進行設計,,如中值濾波、算術平均濾波,、加權平均濾波等等,。所以下面我將詳細介紹它們。 1.1 中值濾波 中位值濾波是先對某一參數(shù)連續(xù)采樣N次(一般N取奇數(shù)),,然后把N次采樣值按從小到大排列,,取中間值為本次采樣值。 該濾波方法實際上是一種排序方法,,我在此采用的是冒泡法排序,。由于在冒泡法排序中,,每出現(xiàn)一次前者數(shù)據(jù)大于后者數(shù)據(jù),就要進行二者數(shù)據(jù)的交換,。 該算法的樣例子程序如下: 1 #define N 11 //N值可根據(jù)實際情況調(diào)整 3 char filter() 5 { 7 char value_buf[]; 9 char count,,i,j,,k,,temp; 11 for(count=0;count 13 { 14 value_buf[count]=get_data(); 17 delay(); 18 } 20 for(i=0;i 22 { k=i; 24 for(j=i+1;j 26 if(value_buf[j] 28 temp=value_buf[k]; 30 value_buf[k]=value_buf[i]; 32 value_buf[i]=temp; 34 } 36 return value_buf[(N-1)/2]; 37 } 位值濾波能有效地克服偶然因素引起的波動或采樣器不穩(wěn)定引起的誤碼等脈沖干擾。對溫度,、液位等緩慢變化的被測參數(shù)采用此算法能收到良好的濾波效果,,但對于流量、壓力等快速變化的數(shù)據(jù),,不宜采用中位值濾波,。 1.2 算術平均濾波 算術平均濾波法適用于對一般的具有隨機干擾的信號進行濾波。這種信號的特點是信號本身在某一數(shù)值范圍附近上下波動,,如測量流量,、液位時經(jīng)常遇到這種情況。算術平均濾波法是要按輸入的N 個采樣數(shù)據(jù),,尋找這樣一個Y,,使得Y 與各個采樣值之間的偏差的平方和最小。 具體實現(xiàn)此算法的子程序如下: 1 #define N 12 2 char filter() 5 { 7 int count; 9 int sum=0; 10 for(count=0;count 13 { 15 sum+=get_ad(); 16 delay(); 17 } 18 return (char)(sum/N); 19 } 算術平均濾波適用于對一般具有隨機干擾的信號進行濾波,。這種信號的特點是有一個平均值,,信號在某一數(shù)值范圍附近做上下波動,在這種情況下僅取一個采樣值做依據(jù)顯然是不準確的,。算術平均濾波對信號的平滑程序完全取決于N,,當N較大時,平滑度高,,但靈敏度低,;當N較小時,平滑度低,,但靈敏度高,應視具體情況選取N,,以便既少占用計算時間,,又達到最好的效果。 1.3 加權平均濾波 在算術平均濾波和移動平均濾波中,,N次采樣值在輸出結(jié)果中的權重是均等的,,取1/N。用這樣的濾波算法,,對于時變信號會引入滯后,,N值越大,,滯后越嚴重。為了增加新采樣數(shù)據(jù)在移動平均中的權重,,以提高系統(tǒng)對當前采樣值中所受干擾的靈敏度,,可采用加權平均濾波,它是移動平均濾波算法的改進,。 加權平均濾波是對連續(xù)N次采樣值分別乘上不同的加權系統(tǒng)之后再求累加和,,加權系統(tǒng)一般先小后大,以突出后面若干采樣的效果,,加強系統(tǒng)對參數(shù)變化趨勢的辨識,。各個加權系統(tǒng)均為小于1的小數(shù),且滿足總和等于1的約束條件,。這樣,,加權運算之后的累加和即為有效采樣值。 為方便計算,,可取各加權系數(shù)均為整數(shù),,且總和為256,加權運算后的累加和除以256,,即舍去低字節(jié)后便是有效采樣值,。具體的樣例子程序如下: 1 //code數(shù)組為加權系統(tǒng)表,存在ROM區(qū),。 2 #define N 12 3 char code jq[N]={1,,2,3,,4,,5,6,,7,,8,9,,10,,11,12}; 4 char code sum_jp=1+2+3+4+5+6+7+8+9+10+11+12; 5 char filter_5() 6 { 7 char count; 8 char value_buf[N]; 9 int sum=0; 10 for(count=0;count 11 { 12 value_buf[count]=get_data(); 13 delay(); 14 } 15 for(count=0;count 16 sum+=value_buf[count]*jq[count]; 17 return (char)(sum/sum_jq); 18 } 1.4 中位值平均濾波 它相當于是“中位值濾波法”和“算術平均濾波法”的結(jié)合,。它連續(xù)采樣N個數(shù)據(jù),,然后去掉一個最大值和一個最小值,最后計算N-2個數(shù)據(jù)的算術平均值,。一般N值的選?。?-14。 具體算法程序如下: 1 #define N 12 2 char filter() 3 { 4 char count,i,,j; 5 char value_buf[N]; 6 int sum=0; 7 for (count=0;count 8 { 9 value_buf[count] = get_ad(); 10 delay(); 11 } 12 for (j=0;j 13 { 14 for (i=0;i 15 { 16 if ( value_buf[i]》value_buf[i+1] ) 17 { 18 temp = value_buf[i]; 19 value_buf[i] = value_buf[i+1]; 20 value_buf[i+1] = temp; 21 } 22 } 23 } 24 for(count=1;count 25 sum += value[count]; 26 return (char)(sum/(N-2)); 27 } 這種濾波方法兼容了移動平均濾波算法和中位值濾波算法的優(yōu)點,,所以無論對緩慢變化的信號,還是對快速變化的信號,,都能取得較好的濾波效果,。 1.5 限幅濾波 限幅濾波的基本原理是把兩次相鄰時刻(n和n-1)的采樣值Yn和Yn-1相減,求出其差值,,以絕對值表示,,然后將這個差值與兩次采樣允許的最大偏差值ΔY比較,如果兩次采樣值的差值超過了允許的最大偏差值ΔY,,則認為發(fā)生了隨機干擾,,并認為最后一次采樣值Yn非法,應予剔除,。剔除Yn后,,可用Yn-1代替Yn;若未超過允許的最大偏差值范圍,,則認為本次采樣值有效,。可用如下公式表示: |Yn-Yn-1|≤ΔY,;則Yn有效 |Yn-Yn-1|>ΔY,;則Yn-1有效 此算法的樣例子程序如下: 此算法的樣例子程序如下: #define A 10 //A值可根據(jù)實際情況調(diào)整 char data; //上一次的數(shù)據(jù) char filter_1() { char datanew; //新數(shù)據(jù)變量 datanew=get_data(); //獲得新數(shù)據(jù) //濾波算法 if ((datanew-data》A)||(data-datanew》A) return data; return datanew; } 該算法主要用于處理變化比較緩慢的數(shù)據(jù),如溫度,、物體的位置等,。使用時關鍵在于最大偏差值的Δy的選擇,通??筛鶕?jù)經(jīng)驗獲得,,也可按照輸出參數(shù)可能的最大變化速度Vmax及采樣周期T來決定ΔY的值,即ΔY=VmaxT,。 1 #include 2 #include 3 #define uchar unsigned char 4 #define A 0.005 5 #define N 11 6 sbit con1 = P2^3; 7 sbit con2 = P2^4; 8 sbit con3 = P2^5; 9 sbit con = P2^6; 10 sbit OE = P2^0; 11 sbit START = P2^1; 12 sbit EOC = P2^2; 13 uchar a; 14 uchar buf[N] ={0}; 15 void change() 16 { 17 int i; 18 for(i=0;i
19 |
|