久久国产成人av_抖音国产毛片_a片网站免费观看_A片无码播放手机在线观看,色五月在线观看,亚洲精品m在线观看,女人自慰的免费网址,悠悠在线观看精品视频,一级日本片免费的,亚洲精品久,国产精品成人久久久久久久

分享

《角格點(diǎn)問題幾何解法》

 GrantJoes 2020-01-09
Er,、應(yīng)用垂線段最短的性質(zhì)求最值:典型題:例1. (2012山東萊蕪4分)在△ABC,AB=AC=5,BC=6.若點(diǎn)P在邊AC上動(dòng),則BP的最小值是▲ .  ,。  【析】如圖,根據(jù)垂直線段最短的性質(zhì),當(dāng)BP′⊥AC時(shí),BP取得最小值,?! ≡O(shè)AP′=x,則由AB=AC=5CP′=5-x,  又∵BC=6,∴Rt△AB P′和Rt△CBP′中應(yīng)用勾股定理,得  ?!  ?,解得,。  ∴,即BP的最小值是,?! ?span t='例'>例2.(2012浙江臺(tái)州4分)如圖,形ABCD中,AB=2,∠A=120°,點(diǎn)P, Q,K分別為線段BC,CD,BD上的任一點(diǎn),則PK+QK的最小值為【】  A. 1  B.  C. 2  D.+1  B?!  ?span t='分'>分析】分兩步分析:  (1)若點(diǎn)P,Q定,此時(shí)點(diǎn)K的位置:如圖,作點(diǎn)P關(guān)于BD對(duì)稱點(diǎn)P1,連接P1Q,交BD于點(diǎn)K1?! ?span t='由'>由線段中垂線上的點(diǎn)到線段兩端距離相等的性質(zhì),得  P1K1= P K1,P1K=PK,。  三角形兩邊之和大于第三邊的性質(zhì),得P1K+QK>P1Q= P1K1+Q K1= P K1+Q K1,?!  ?span t='此'>此時(shí)的K1就是使PK+QK最小的位置?! ?2)點(diǎn)P,Q變動(dòng),根據(jù)菱形的性質(zhì),點(diǎn)P關(guān)于BD的對(duì)稱點(diǎn)P1在AB上,即不論點(diǎn)P在BC上任一點(diǎn),點(diǎn)P1總在AB上,。  因此,根據(jù)直線外一點(diǎn)到直線的所有連線中垂直線段最短的性質(zhì),得,當(dāng)P1Q⊥AB時(shí)P1Q最短,?! ∵^點(diǎn)A作AQ1⊥DC于點(diǎn)Q1?!摺螦=120°,∴∠DA Q1=30°,。  ∵AD=AB=2,∴P1Q=AQ1=AD·cos300=,?! ?span t='綜'>綜上所述,PK+QK的最小值為。故選B,?! ?span t='例'>例3.(2012江蘇連云港12分)已知梯ABCD,AD∥BC,AB⊥BC,AD=1, AB=2,BC=3,  題1:如圖1,P為AB邊上的一點(diǎn),以PD,PC邊作平行四邊形PCQD,請(qǐng)問對(duì)角線PQ,DC長(zhǎng)能否相等,為什么?  問題2:如圖2,P為AB邊上一點(diǎn),以PD,PC為邊作平行四形PCQD,請(qǐng)問對(duì)角線PQ的長(zhǎng)是否存在最小值?果存在,請(qǐng)求出最小值,如果不存在,請(qǐng)說明理由.  題3:若P為AB邊上任意一點(diǎn),延長(zhǎng)PDE,使DE=PD,再以PE,PC 為邊作平行邊形PCQE,請(qǐng)?zhí)骄繉?duì)角線PQ的長(zhǎng)是否存在最小值?如果存在,請(qǐng)求出最小值,如果不在,請(qǐng)說明理由.  問題4:如圖3,P為DC邊上任意一點(diǎn),延長(zhǎng)PA到E,使AE=nPA(n為常數(shù)),以PE、PB邊作平行四邊形PBQE,請(qǐng)?zhí)骄繉?duì)角線PQ長(zhǎng)是否也存在最小值?如果存在,請(qǐng)求出最小值,果不存在,請(qǐng)說明理由.  【答案】解:題1:對(duì)角線PQ與DC不可能相等,。理由如:  ∵四邊形PCQD是平行四邊,若對(duì)角線PQ,、DC相等,則四邊形PCQD是形,  ∴∠DPC=90°?!  逜D=1,AB=2,BC=3,∴DC=2,?! ?span t='設(shè)'>設(shè)PB=x,則AP=2-x,  在Rt△DPC,PD2+PC2=DC2,即x2+32+(2-x)2+12=8,簡(jiǎn)得x2 -2x+3=0,  ∵△=(-2)2-4×1×3=-8<0,∴程無解?!  嗖淮嬖赑B=x,使∠DPC=90°,。∴對(duì)角線PQ與DC不可能相等,?! 栴}2:在。理由如下:  如圖2,在平行邊形PCQD中,設(shè)對(duì)角線PQ與DC相交于點(diǎn)G,  G是DC的中點(diǎn),?! ∵^點(diǎn)Q作QH⊥BC,BC的延長(zhǎng)線于H?!  逜D∥BC,∴∠ADC=∠DCH,∠ADP+∠PDG=∠DCQ+∠QCH,。  ∵PD∥CQ,∴∠PDC=∠DCQ,?!唷螦DP=∠QCH?! ?span t='又'>又∵PD=CQ,∴Rt△ADP≌Rt△HCQ(AAS),。∴AD=HC,?!  逜D=1,BC=3,∴BH=4,  ∴當(dāng)PQ⊥AB時(shí),PQ的長(zhǎng)最小,即為4?! ?span t='問'>問題3:存在,。理由如下:  如圖3,設(shè)PQDC相交于點(diǎn)G,  ∵PE∥CQ,PD=DE,∴?!  郍DC上一定點(diǎn),。  作QH⊥BC,交BC延長(zhǎng)線于H,  同理可證∠ADP=∠QCH,∴Rt△ADP∽R(shí)t△HCQ,?!唷,!  逜D=1,∴CH=2,。∴BH=BG+CH=3+2=5,?!  ?span t='當(dāng)'>當(dāng)PQ⊥AB時(shí),PQ的長(zhǎng)最小,即為5?! ?span t='問'>問題4:如圖3,設(shè)PQ與AB相交于點(diǎn)G,  ∵PE∥BQ,AE=nPA,∴,?!  郍DC上一定點(diǎn)?! ∽鱍H∥PE,交CB延長(zhǎng)線于H,過點(diǎn)C作CK⊥CD,交QH延長(zhǎng)線于K,。∵AD∥BC,AB⊥BC,  ∴∠D=∠QHC,∠DAP+∠PAG=∠QBH+∠QBG=90°  ∠PAG=∠QBG,  ∴∠QBH=∠PAD,?!唷鰽DP∽△BHQ,∴,  ∵AD=1,∴BH=n+1?!郈H=BH+BC=3+n+1=n+4,。  點(diǎn)D作DM⊥BC于M,則四邊形ABND矩形,?!  郆M=AD=1,DM=AB=2?!郈M=BC-BM=3-1=2=DM,。  ∴∠DCM=45°,。∴∠KCH=45°,?!  郈K=CH·cos45°=(n+4),  ∴當(dāng)PQ⊥CD時(shí),PQ的長(zhǎng)最小,最小值為(n+4)?! ?span t='例'>例4.(2012四川廣元3分)如圖,點(diǎn)A坐標(biāo)為(-1,0),點(diǎn)B在直線上運(yùn)動(dòng),當(dāng)段AB最短  時(shí),點(diǎn)B的坐標(biāo)為【】  A.(0,0)  B.(,)  C.(,)  D.(,)  5.(2012四川樂山3分)如圖,在△ABC,∠C=90°,AC=BC=4,DAB的中點(diǎn),點(diǎn)E,、F分別在AC、BC上運(yùn)動(dòng)(點(diǎn)E不與點(diǎn)A,、C重合),且保持AE=CF,接DE、DF、EF.在此運(yùn)動(dòng)變化的過程,有下列結(jié)論: ?、佟鱀FE是等腰直角三形; ?、谒倪呅蜟EDF不可能為正形;  ③四邊形CEDF的面積隨點(diǎn)E置的改變而發(fā)生變化; ?、茳c(diǎn)C到段EF的最大距離為.  其中正確結(jié)論的個(gè)數(shù)是【】  A.1個(gè)  B.2個(gè)  C.3個(gè)  D.4個(gè)  B,。  【析】①連接CD(如圖1),?!  摺鰽BC等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB?!  逜E=CF,∴△ADE≌△CDF(SAS),?!  郋D=DF,∠CDF=∠EDA?!  摺螦DE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,。  ∴△DFE等腰直角三角形,?! 」蚀私Y(jié)論正確?! ,、?span t='當(dāng)'>當(dāng)E、F分別為AC,、BC中點(diǎn)時(shí),∵由三角形中位定理,DE平行且等于BC,。  ∴四邊形CEDF平行四邊形,?! ∮帧逧、F分別為AC,、BC點(diǎn),AC=BC,∴四邊形CEDF是形,。  又∵∠C=90°,∴四邊形CEDF正方形,?! 」蚀私Y(jié)論錯(cuò)誤?! ,、廴?span t='圖'>圖2,分別過點(diǎn)D,作DM⊥AC,DN⊥BC,點(diǎn)M,N,  由②,知四邊形CMDN是方形,∴DM=DN?! ∮散?知△DFE等腰直角三角形,∴DE=DF,。  ∴Rt△ADE≌Rt△CDF(HL),?!  ?span t='由'>由割補(bǔ)法可知四邊形CEDF的面積等于正方形CMDN積?!  嗨倪呅蜟EDF的面積不隨點(diǎn)E位置的改變而發(fā)生變化,。  故此結(jié)錯(cuò)誤,?! 、苡散?△DEF是等腰角三角形,∴DE=EF?! ‘?dāng)DFBC垂直,即DF最小時(shí),EF取最小值2,。時(shí)點(diǎn)C到線段EF的最大距離為?! ?span t='故'>故此結(jié)論正確,。  故正確的有2個(gè):①④,。故B,。  三,、應(yīng)用軸對(duì)稱的性質(zhì)求最值:典例題:例1. (2012山東青島3分)如圖,柱形玻璃杯高為300px,、底面周長(zhǎng)為450px,杯內(nèi)離杯底100px的點(diǎn)  C處有一滴蜂,此時(shí)一只螞蟻正好在杯外壁,離杯上沿100px蜂蜜相對(duì)的點(diǎn)A處,則螞蟻到達(dá)蜂蜜的最  距離為▲ cm.  【答案】15?!  ?span t='分'>分析】如圖,圓柱形玻璃杯展開(沿點(diǎn)A豎剖開)后側(cè)面是一個(gè)長(zhǎng)18寬12的矩形,作點(diǎn)A關(guān)于杯上沿MN的對(duì)稱點(diǎn)B,連接BC交MN于點(diǎn)P,連接BM,  過點(diǎn)C作AB的垂線交剖線MA于點(diǎn)D,。  由軸對(duì)稱的性質(zhì)三角形三邊關(guān)系知AP+PC為螞蟻到達(dá)蜂蜜  最短距離,且AP=BP,?! ∮梢阎途匦?span t='的'>的性質(zhì),得DC=9,BD=12?! ?span t='在'>在Rt△BCD中,由勾股定理得,。  ∴AP+PC=BP+PC=BC=15,螞蟻到達(dá)蜂蜜的最短距離為375px,。例2. (2012肅蘭州4分)如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,BC,、CD上分別找一點(diǎn)M、N,使△AMN周長(zhǎng)小時(shí),則∠AMN +∠ANM的度數(shù)【】  A.130°  B.120°  C.110°  D.100°  【案】B,。  【分析】根據(jù)要使△AMN的長(zhǎng)最小,即利用點(diǎn)的對(duì)稱,讓三角形的三邊同一直線上,作出A關(guān)于BC和ED的對(duì)稱點(diǎn)A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,進(jìn)而得出∠AMN+∠ANM=2(∠AA′M+∠A″)可得出答案:如圖,作A關(guān)于BC和ED的對(duì)稱點(diǎn)A′,A″,接A′A″,交BC于M,交CD 于N,A′A″即為△AMN的周長(zhǎng)最小值,。DA延長(zhǎng)線AH,。  ∵∠BAD=120°,∴∠HAA′=60°,?!  唷螦A′M+∠A″=∠HAA′=60°?!  摺螹A′A=∠MAA′,∠NAD=∠A″,  ∠MA′A+∠MAA′=∠AMN,  ∠NAD+∠A″=∠ANM,  ∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)= 2×60°=120°,。  選B,?! ±?. (2012福建莆田4分)點(diǎn)A、B均在由面積為1的相同小矩形組成的網(wǎng)的格點(diǎn)上,建立平面直角  坐標(biāo)系如所示.若P是x軸上使得的值最大的點(diǎn),Q是y軸使得QA十QB 的值最小的點(diǎn),  =▲.  【答案】5?!  痉治觥窟BAB并延長(zhǎng)交x軸于點(diǎn)P,作A點(diǎn)關(guān)于y的對(duì)稱點(diǎn)A′連接A′B交y軸于點(diǎn)Q,出點(diǎn)Q與y軸的交點(diǎn)坐標(biāo)即可得出結(jié)論:  接AB并延長(zhǎng)交x軸于點(diǎn)P,  由三角的三邊關(guān)系可知,點(diǎn)P即為x軸上使得|PA-PB|值最大的點(diǎn),。  ∵點(diǎn)B是正方形ADPC中點(diǎn),  ∴P(3,0)即OP=3,?! ?span t='作'>作A點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)A′連接A′B交y軸于點(diǎn)Q,則A′B即為QA+QB的最小值?!  逜′(-1,2),B(2,1),  設(shè)過A′B的直線為:y=kx+b,  則,得,。∴Q(0,),即OQ=,?!  郞P·OQ=3×=5?! ?span t='例'>例4. (2012四川攀枝花4分)如圖,方形ABCD中,AB=4,E是BC的中點(diǎn),點(diǎn)P是對(duì)角線AC上一動(dòng)點(diǎn),則PE+PB的小值為▲ .  【答案】,。  【分】連接DE,交BD于點(diǎn)P,連接BD,?!  ?span t='點(diǎn)'>點(diǎn)B與點(diǎn)D關(guān)于AC對(duì)稱,∴DE的長(zhǎng)即為PE+PB最小值?!  逜B=4,E是BC的中點(diǎn),∴CE=2,。  Rt△CDE中,,?! ±?. (2012西貴港2分)如圖,MN為⊙O的直徑,A、BO上的兩點(diǎn),過A作AC⊥MN于點(diǎn)C,  B作BD⊥MN于點(diǎn)D,P為DC上的任一點(diǎn),若MN=20,AC=8,BD= 6,PA+PB的最小值是  ▲,?!  ?span t='答'>答案】14?!  痉治觥俊進(jìn)N=20,∴⊙O半徑=10,。  連接OA,、OB,  Rt△OBD中,OB=10,BD=6,  ∴OD===8,。  理,在Rt△AOC中,OA=10,AC=8,  ∴OC===6,?!  郈D=8+6=14?! ?span t='作'>作點(diǎn)B關(guān)于MN的對(duì)稱點(diǎn)B′,連接AB′,AB′即為PA+PB的最小值,B′D= BD=6,點(diǎn)B′  作AC的垂線,交AC的長(zhǎng)線于點(diǎn)E,?! ≡赗t△AB′E,∵AE=AC+CE=8+6=14,B′E=CD=14,  ∴AB′===14?! ?span t='例'>例6. (2012湖北十堰6分)閱讀料:  例:說明代數(shù)式的幾何意義,求它的最小值.  解:,如圖,建立平直角坐標(biāo)系,點(diǎn)P(x,0)是x軸上一點(diǎn),可以看成點(diǎn)P與點(diǎn)A(0,1)的距離,可看成點(diǎn)P與點(diǎn)B(3,2)的距離,所以原代數(shù)式的值可以看成線段PA與PB長(zhǎng)度之和,它的最值就是PA+PB的最小值.  設(shè)點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A′,則PA=PA′,因,求PA+PB的最小值,只需求PA′+PB最小值,而點(diǎn)A′,、B間的直線段距離最,所以PA′+PB的最小值為線段A′B長(zhǎng)度.為此,構(gòu)造直角三角形A′CB,為A′C=3,CB=3,所以A′B=3,即式的最小值為3?! 「鶕?jù)以上閱讀材料,答下列問題:  (1)代數(shù)式的可以看成平面直角坐標(biāo)系中點(diǎn)P(x,0)點(diǎn)A(1,1),、點(diǎn)  B 的距離和.(填寫點(diǎn)B的坐標(biāo))  (2)代數(shù)式的最小值為.  【答案】解:(1)(2,3)?! ?2)10,。  【析】(1)∵原式化為的形式,  ∴數(shù)式的值可以看成平面直角坐標(biāo)系中點(diǎn)P(x,0)點(diǎn)A  (1,1),、點(diǎn)B(2,3)的距離和,。  (2)∵原式化為的形式,  ∴求代數(shù)式的值可以看成平面直角坐標(biāo)系中點(diǎn)P(x,0)點(diǎn)A(0,7),、點(diǎn)B(6,1)  的離之和,。  如圖所示:設(shè)點(diǎn)A關(guān)于x的對(duì)稱點(diǎn)為A′,則PA=PA′,  ∴PA+PB的最小值,只需求PA′+PB最小值,而點(diǎn)A′,、B  間的直線段距離短,。  ∴PA′+PB的最小值為線A′B的長(zhǎng)度,?!  逜(0,7),B(6,1),∴A′(0,-7),A′C=6,BC=8?!  ?。  ,、應(yīng)用二次函數(shù)求最值:典型例題:  1. (2012四川自貢4分)正方形ABCD邊長(zhǎng)為25px,M,、N分別是BC.CD 兩個(gè)動(dòng)點(diǎn),且始終保持AM⊥MN,當(dāng)BM= ▲ cm時(shí),四邊形ABCN 的面積最大,最大積為▲ cm2.  【答案】,?!  ?span t='分'>分析】設(shè)BM=xcm,則MC=1﹣xcm,  ∵∠AMN=90°,∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,∴∠AMB=90°﹣∠NMC=∠MNC,。  ∴△ABM∽△MCN,∴,,解得CN=x(1﹣x),。  ∴,?!  ?lt;0,∴當(dāng)x=cm時(shí),S四邊形ABCN最大,大值是cm2?! ±?.(2012江蘇揚(yáng)3分)如圖,線段AB的長(zhǎng)為2,C為AB上個(gè)動(dòng)點(diǎn),分  別以AC,、BC為斜邊在AB同側(cè)作兩個(gè)等腰直角三角形△ACD和△BCE,么DE長(zhǎng)的最小值是▲.  【答案】1。  【析】設(shè)AC=x,則BC=2-x,  ∵△ACD△BCE都是等腰直角三角形,  ∴∠DCA=45°,∠ECB=45°,DC=,CE=,?!  唷螪CE=90°?!  郉E2=DC2+CE2=()2+[]2=x2-2x+2=(x-1)2+1,。  ∴當(dāng)x=1時(shí),DE2取得最小值,DE也取得最小值,小值為1,?! ±?.(2012寧夏區(qū)10)在矩形ABCD中,AB=2,AD=3,PBC上的任意一點(diǎn)(P與B、C不重合),點(diǎn)P作AP⊥PE,垂足為P,PE交CD于點(diǎn)E.  (1)接AE,當(dāng)△APE與△ADE全等時(shí),BP的長(zhǎng);  (2)若設(shè)BP為x,CEy,試確定y與x的函數(shù)關(guān)系式,。當(dāng)x取值時(shí),y的值最大?最大值是多少?  (3)PE∥BD,試求出此時(shí)BP的長(zhǎng).  【答】解:(1)∵△APE≌△ADE,∴AP=AD=3,。  Rt△ABP中,AB=2,∴BP=,?! ?2)∵AP⊥PE,∴Rt△ABP∽R(shí)t△PCE?!  ?,。∴,?!  摺  喈?dāng)時(shí),y的值大,最大值是?! ?2)設(shè)BP=x, 由(2),。  ∵PE∥BD,,∴△CPE∽△CBD,?!  ?,  化簡(jiǎn)得?! 〗獾没?不合題意,去),。  ∴當(dāng)BP= 時(shí),PE∥BD,?! ?span t='例'>例4.(2012廣東廣州14分)如圖,在平四邊形ABCD中,AB=5,BC=10, FAD的中點(diǎn),CE⊥AB于E,設(shè)∠ABC=α(60°≤α<90°).  (1)當(dāng)α=60°時(shí),求CE的長(zhǎng);  (2)當(dāng)60°<α<90°時(shí),  ①是否在正整數(shù)k,使得∠EFD=k∠AEF?存在,求出k的值;若不存在,請(qǐng)說明理由. ?、?span t='連'>連接CF,當(dāng)CE2﹣CF2取最大值時(shí),求tan∠DCF值.  【答案】解:(1)∵α=60°,BC=10,∴sinα=,sin60°=,解得CE=,。  (2)①在k=3,使得∠EFD=k∠AEF,。由如下:  連接CF并延長(zhǎng)交BA延長(zhǎng)線于點(diǎn)G,  ∵F為AD的中點(diǎn),∴AF=FD,?! ≡谄叫兴倪呅蜛BCD,AB∥CD,∴∠G=∠DCF?! ?span t='在'>在△AFG和△CFD中,  ∵∠G=∠DCF,∠G=∠DCF,AF=FD,  ∴△AFG≌△CFD(AAS),。∴CF=GF,AG=CD,?!  逤E⊥AB,∴EF=GF?!唷螦EF=∠G,。  ∵AB=5,BC=10,點(diǎn)F是AD的中點(diǎn),∴AG=5,AF=AD=BC=5,?!郃G=AF?!唷螦FG=∠G,。  △AFG中,∠EFC=∠AEF+∠G=2∠AEF,  ∵∠CFD=∠AFG,∴∠CFD=∠AEF,?!  唷螮FD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF,  此,存在正整數(shù)k=3,使得∠EFD=3∠AEF?! ,、?span t='設(shè)'>設(shè)BE=x,∵AG=CD=AB=5,∴EG=AE+AG=5﹣x+5=10﹣x,  Rt△BCE中,CE2=BC2﹣BE2=100﹣x2?! ?span t='在'>在Rt△CEG中,CG2=EG2+CE2=(10﹣x)2+100﹣x2=200﹣20x,。  ∵CF=GF(①已證),∴CF2=(CG)2=CG2=(200﹣20x)=50﹣5x,?!  郈E2﹣CF2=100﹣x2﹣50+5x=﹣x2+5x+50=﹣(x﹣)2+50+?!  ?span t='當(dāng)'>當(dāng)x=,即點(diǎn)E是AB的中點(diǎn)時(shí),CE2﹣CF2最大值,。  此時(shí),EG=10﹣x=10﹣,CE=,  ∴,?! ?span t='例'>例5.(2012江蘇鎮(zhèn)江11分)等邊△ABC邊長(zhǎng)為2,P是BC邊上的任一點(diǎn)(與B、C重合),連接AP,以AP為邊向兩側(cè)作等邊△APD等邊△APE,分別與邊AB,、AC交點(diǎn)M,、N(如圖1)?! ?1)求:AM=AN;  (2)設(shè)BP=x,。 ?、?span t='若'>若,BM=,求x的值; ?、谟浰倪呅蜛DPE△ABC重疊部分的面積為S,求S與x之的函數(shù)關(guān)系式以及S的最小值;  ③連DE,分別與邊AB,、AC交于點(diǎn)G,、H(如圖2),當(dāng)x取何值時(shí),∠BAD=150?并判斷此時(shí)以DG、GH,、HE這三條線段為邊構(gòu)的三角形是什么特殊三角形,請(qǐng)說明理由,。  【案】解:(1)證明:∵△ABC,、△APD和△APE是等邊三角形,  ∴AD=AP,∠DAP=∠BAC=600,∠ADM=∠  APN=600,。∴∠DAM=∠PAN,?!  唷鰽DM≌△APN(ASA),∴AM=AN?! ?2)①證△BPM∽△CAP,∴,  ∵BN=,AC=2,CP=2-x,∴,,。  解得x=或x=,?! 、谒倪?span t='形'>形AMPN的面積即為四邊形ADPE與△ABC疊部分的面積,?!  摺鰽DM≌△APN,∴?!  ?。  圖,過點(diǎn)P作PS⊥AB于點(diǎn)S,過點(diǎn)DDT⊥AP于點(diǎn)T,則點(diǎn)T是AP的中點(diǎn),?! ?span t='在'>在Rt△BPS中,∵∠P=600,BP=x,  ∴PS=BPsin600=x,BS=BPcos600=x?!  逜B=2,∴AS=AB-BC=2-x,。  ∴,?!  唷,!  ??!  ?span t='當(dāng)'>當(dāng)x=1時(shí),S的最小值為?! ,、圻BPG,設(shè)DE交AP于點(diǎn)O?! ∪簟螧AD=150,  ∵∠DAP =600,∴∠PAG =450,。  ∵△APD△APE都是等邊三角形,  ∴AD=DP=AP=PE=EA,?!  ?span t='四'>四邊形ADPE是菱形?!  郉O垂直平分AP,。  ∴GP=AG,?!唷螦PG =∠PAG=450?!  唷螾GA =900,。  設(shè)BG=t,  在Rt△BPG中,∠B=600,∴BP=2t,PG=,?!郃G=PG=?!  ?得t=-1,。∴BP=2t=2-2,?!  ?span t='當(dāng)'>當(dāng)BP=2-2時(shí),∠BAD=150?! ?span t='猜'>猜想:以DG,、GH、HE這三條線段為邊構(gòu)的三角形是直角三角形,?!  咚倪呅蜛DPE菱形,∴AO⊥DE,∠ADO=∠AEH=300?!  摺螧AD=150,∴得∠AGO=450,∠HAO=150,∠EAH=450,。  設(shè)AO=a,則AD=AE=2 a,OD=a?!郉G=DO-GO=(-1)a,。  ∵∠BAD=150,∠BAC=600,∠ADO=300,∴∠DHA=∠DAH=750,?!  逥H=AD=2a,  ∴GH=DH-DG=2a-(-1)a=(3-)a,  HE=2DO-DH=2a-2a=2(-1)a?!  ?  ,  ∴?!  ?span t='以'>以DG,、GH、HE這三條線段為邊構(gòu)成的三角是直角三角形,?! ±?.(2012江蘇州8分)如圖,已知半徑為2的⊙O與直線l相于點(diǎn)A,點(diǎn)P是直徑AB左側(cè)半圓上  動(dòng)點(diǎn),過點(diǎn)P作直線l的垂線,垂足為C,PC⊙O交于點(diǎn)D,連接PA、PB,設(shè)PC長(zhǎng)為. ?、女?dāng)時(shí),求弦PA,、PB的長(zhǎng)度;  ⑵當(dāng)x為何值時(shí),的值最大?最大值是多少?  【案】解:(1)∵⊙O與直線l相切于點(diǎn)A,AB⊙O的直徑,∴AB⊥l,。又∵PC⊥l,∴AB∥PC.∴∠CPA=∠PAB,。  ∵AB⊙O的直徑,∴∠APB=90°,?!  唷螾CA=∠APB.∴△PCA∽△APB?!  ?PA2=PC·PD,。  ∵PC=,AB=4,∴,?!  ?span t='在'>在Rt△APB中,由勾股定理得:?! ?2)O作OE⊥PD,垂足為E,。  ∵PD⊙O的弦,OF⊥PD,∴PF=FD,?! ?span t='在'>在矩形OECA中,CE=OA=2,∴PE=ED=x-2?!  郈D=PC-PD= x-2(x-2)=4-x ,。  ∴,?!  ?

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn),。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式,、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙,。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多