久久国产成人av_抖音国产毛片_a片网站免费观看_A片无码播放手机在线观看,色五月在线观看,亚洲精品m在线观看,女人自慰的免费网址,悠悠在线观看精品视频,一级日本片免费的,亚洲精品久,国产精品成人久久久久久久

分享

fast-rcnn reademe

 木俊 2018-06-18

fast-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN.
fast-rcnn已被棄用,。 請(qǐng)參閱Detectron,,其中包括Mask R-CNN的實(shí)現(xiàn)。

This code base is no longer maintained and exists as a historical artifact to supplement my ICCV 2015 paper. For more recent work that's faster and more accurrate, please see Faster R-CNN (which also includes functionality for training Fast R-CNN).
此代碼庫(kù)不再被維護(hù),,并作為歷史文物存在,以補(bǔ)充我的ICCV 2015年論文,。 對(duì)于更快速且更令人滿意的更新工作,,請(qǐng)參閱 Faster R-CNN(其中還包括用于訓(xùn)練Fast R-CNN的特征)。

Fast R-CNN: Fast Region-based Convolutional Networks for object detection

Created by Ross Girshick at Microsoft Research, Redmond.

Introduction

Fast R-CNN is a fast framework for object detection with deep ConvNets. Fast R-CNN

  • trains state-of-the-art models, like VGG16, 9x faster than traditional R-CNN and 3x faster than SPPnet,
  • runs 200x faster than R-CNN and 10x faster than SPPnet at test-time,
  • has a significantly higher mAP on PASCAL VOC than both R-CNN and SPPnet,
  • and is written in Python and C++/Caffe.
    訓(xùn)練最先進(jìn)的模型,,如VGG16,,比傳統(tǒng)R-CNN快9倍,比SPPnet快3倍,,
    在測(cè)試時(shí)運(yùn)行速度比R-CNN快200倍,,比SPPnet快10倍,
    在PASCAL VOC上的MAP明顯高于R-CNN和SPPnet,,
    并用Python和C ++ / Caffe編寫
Fast R-CNN was initially described in an arXiv tech report and later published at ICCV 2015.
Fast R-CNN最初是在arXiv技術(shù)報(bào)告中描述的,,后來(lái)在ICCV 2015上發(fā)表
License

Fast R-CNN is released under the MIT License (refer to the LICENSE file for details).

Citing Fast R-CNN

If you find Fast R-CNN useful in your research, please consider citing:

@inproceedings{girshickICCV15fastrcnn,
    Author = {Ross Girshick},
    Title = {Fast R-CNN},
    Booktitle = {International Conference on Computer Vision ({ICCV})},
    Year = {2015}
}

Contents

  1. Requirements: software
  2. Requirements: hardware
  3. Basic installation
  4. Demo
  5. Beyond the demo: training and testing
  6. Usage
  7. Extra downloads

Requirements: software

  1. Requirements for Caffe and pycaffe (see: Caffe installation instructions)
Note: Caffe must be built with support for Python layers! 
Caffe必須構(gòu)建為支持Python層,!

#
In your Makefile.config, make sure to have this line uncommented
在你的Makefile.config中,,確保沒(méi)有注釋這一行
WITH_PYTHON_LAYER := 1
You can download my Makefile.config for reference. 2. Python packages you might not have: cython, python-opencv, easydict3. [optional] MATLAB (required for PASCAL VOC evaluation only)
你可以下載我的Makefile.config以供參考,。 2.你可能沒(méi)有的Python包:cython,,python-opencv,easydict3,。 [可選] MATLAB(僅用于PASCAL VOC評(píng)估)
Requirements: hardware
  1. For training smaller networks (CaffeNet, VGG_CNN_M_1024) a good GPU (e.g., Titan, K20, K40, ...) with at least 3G of memory suffices
  2. For training with VGG16, you'll need a K40 (~11G of memory)
    對(duì)于訓(xùn)練較小的網(wǎng)絡(luò)(CaffeNet,VGG_CNN_M_1024),,至少具有3G內(nèi)存的好GPU(例如Titan,K20,,K40,,...)
    使用VGG16進(jìn)行培訓(xùn)時(shí),,您需要K40(?11G內(nèi)存)

Installation (sufficient for the demo)
安裝(足夠演示)

  1. Clone the Fast R-CNN repository
    克隆Fast R-CNN存儲(chǔ)庫(kù)
# Make sure to clone with --recursive
確保使用--recursive克隆
git clone --recursive https://github.com/rbgirshick/fast-rcnn.git
  1. We'll call the directory that you cloned Fast R-CNN into FRCN_ROOT
    我們會(huì)將您將Fast R-CNN克隆到FRCN_ROOT的目錄

    Ignore notes 1 and 2 if you followed step 1 above.
    如果您執(zhí)行了上述步驟1,請(qǐng)忽略注釋1和2,。

    Note 1: If you didn't clone Fast R-CNN with the --recursive flag, then you'll need to manually clone the caffe-fast-rcnnsubmodule:
    如果您沒(méi)有使用--recursive標(biāo)志克隆Fast R-CNN,,那么您需要手動(dòng)克隆caffe-fast-rcnnsubmodule:

    git submodule update --init --recursive
    Note 2: The caffe-fast-rcnn submodule needs to be on the fast-rcnn branch (or equivalent detached state). This will happen automatically if you follow these instructions.

    caffe-fast-rcnn子模塊需要位于fast-rcnn分支上(或等效的分離狀態(tài))。 如果您按照這些說(shuō)明進(jìn)行操作,,會(huì)自動(dòng)發(fā)生。
  2. Build the Cython modules
    構(gòu)建Cython模塊

    cd
    $FRCN_ROOT/lib make
  3. Build Caffe and pycaffe
    建立caffe和pycaffe

    cd
    $FRCN_ROOT/caffe-fast-rcnn # Now follow the Caffe installation instructions here:
    現(xiàn)在按照這里的Caffe安裝說(shuō)明進(jìn)行操作:
    # http://caffe./installation.html # If you're experienced with Caffe and have all of the requirements installed # and your Makefile.config in place, then simply do:
    如果您對(duì)Caffe有經(jīng)驗(yàn)并且已經(jīng)安裝了所有需求并且已經(jīng)安裝了Makefile.config,那么只需執(zhí)行以下操作:
    make -j8 && make pycaffe
  4. Download pre-computed Fast R-CNN detectors
    下載預(yù)先計(jì)算的Fast R-CNN檢測(cè)器

    cd
    $FRCN_ROOT ./data/scripts/fetch_fast_rcnn_models.sh
    This will populate the $FRCN_ROOT/data folder with fast_rcnn_models. See data/README.md for details.

    這將使用fast_rcnn_models填充$ FRCN_ROOT / data文件夾。 有關(guān)詳細(xì)信息,,請(qǐng)參閱data / README.md,。

Demo

After successfully completing basic installation, you'll be ready to run the demo.
成功完成基本安裝后,,您將準(zhǔn)備好運(yùn)行演示,。


Python

To run the demo

cd $FRCN_ROOT
./tools/demo.py
The demo performs detection using a VGG16 network trained for detection on PASCAL VOC 2007. The object proposals are pre-computed in order to reduce installation requirements.
該演示使用經(jīng)過(guò)培訓(xùn)在PASCAL VOC 2007上進(jìn)行檢測(cè)的VGG16網(wǎng)絡(luò)執(zhí)行檢測(cè),。預(yù)先計(jì)算對(duì)象提議以降低安裝要求,。

Note:
 If the demo crashes Caffe because your GPU doesn't have enough memory, try running the demo with a small network, e.g., ./tools/demo.py --net caffenet or with --net vgg_cnn_m_1024. Or run in CPU mode ./tools/demo.py --cpu. Type ./tools/demo.py -h for usage.
注意:如果演示由于GPU沒(méi)有足夠內(nèi)存而導(dǎo)致Caffe崩潰,請(qǐng)嘗試使用小型網(wǎng)絡(luò)(例如./tools/demo.py --net caffenet或使用--net vgg_cnn_m_1024)運(yùn)行演示,。 或者以CPU模式運(yùn)行./tools/demo.py --cpu,。 輸入./tools/demo.py -h以查看使用情況,。


MATLAB

There's also a basic MATLAB demo, though it's missing some minor bells and whistles compared to the Python version.
還有一個(gè)基本的MATLAB演示,,盡管它與Python版本相比缺少一些小小的花里胡哨的東西,。
cd
$FRCN_ROOT/matlab
matlab # wait for matlab to start...

# At the matlab prompt, run the script:
在matlab提示符下運(yùn)行腳本:

>> fast_rcnn_demo
Fast R-CNN training is implemented in Python only, but test-time detection functionality also exists in MATLAB. See matlab/fast_rcnn_demo.m and matlab/fast_rcnn_im_detect.m for details.
快速R-CNN培訓(xùn)僅在Python中實(shí)現(xiàn),,但MATLAB中也存在測(cè)試時(shí)檢測(cè)功能,。 有關(guān)詳細(xì)信息,,請(qǐng)參見(jiàn)matlab / fast_rcnn_demo.m和matlab / fast_rcnn_im_detect.m,。
Computing object proposals
計(jì)算對(duì)象提議
The demo uses pre-computed selective search proposals computed with this code. If you'd like to compute proposals on your own images, there are many options. Here are some pointers; if you run into trouble using these resources please direct questions to the respective authors.
演示使用通過(guò)此代碼計(jì)算的預(yù)先計(jì)算的選擇性搜索建議。 如果您想在自己的圖片上計(jì)算提案,,則有很多選項(xiàng),。 這里有一些指針; 如果您在使用這些資源時(shí)遇到麻煩,,請(qǐng)將問(wèn)題直接發(fā)送給相應(yīng)的作者,。

  1. Selective Search: original matlab code, python wrapper
  2. EdgeBoxes: matlab code
  3. GOP and LPO: python code
  4. MCG: matlab code
  5. RIGOR: matlab code
Apologies if I've left your method off this list. Feel free to contact me and ask for it to be included.
道歉,如果我已經(jīng)離開(kāi)你的方法列表,。 隨時(shí)與我聯(lián)系,,并要求將其包括在內(nèi),。
Beyond the demo: installation for training and testing models
演示之外:安裝訓(xùn)練和測(cè)試模型
  1. Download the training, validation, test data and VOCdevkit
    ?下載訓(xùn)練,,驗(yàn)證,,測(cè)試數(shù)據(jù)和VOCdevkit

    wget http://host.robots./pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar wget http://host.robots./pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar wget http://host.robots./pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
  2. Extract all of these tars into one directory named VOCdevkit
    ?將所有這些tar解壓到一個(gè)名為VOCdevkit的目錄中

    tar xvf VOCtrainval_06-Nov-2007.tar
    tar xvf VOCtest_06-Nov-2007.tar
    tar xvf VOCdevkit_08-Jun-2007.tar
  3. It should have this basic structure
    它應(yīng)該有這個(gè)基本結(jié)構(gòu)

    ?$VOCdevkit
    / # development kit 開(kāi)發(fā)工具包 $VOCdevkit/VOCcode/ # VOC utility code VOC實(shí)用程序代碼 $VOCdevkit/VOC2007 # image sets, annotations, etc. 圖像集,,注釋等 # ... and several other directories ......和其他幾個(gè)目錄...
  4. Create symlinks for the PASCAL VOC dataset
    為PASCAL VOC數(shù)據(jù)集創(chuàng)建符號(hào)鏈接

    ?cd
    $FRCN_ROOT/data ln -s $VOCdevkit VOCdevkit2007
    Using symlinks is a good idea because you will likely want to share the same PASCAL dataset installation between multiple projects.

    ?使用符號(hào)鏈接是一個(gè)好主意,,因?yàn)槟赡芟M诙鄠€(gè)項(xiàng)目之間共享相同的PASCAL數(shù)據(jù)集安裝
  5. [Optional] follow similar steps to get PASCAL VOC 2010 and 2012

    ?[可選]按照類似步驟獲取PASCAL VOC 2010和2012
  6. Follow the next sections to download pre-computed object proposals and pre-trained ImageNet models

    ?按照下一節(jié)下載預(yù)先計(jì)算的對(duì)象建議和預(yù)先訓(xùn)練的ImageNet模型

Download pre-computed Selective Search object proposals
?下載預(yù)先計(jì)算的選擇性搜索對(duì)象提議

Pre-computed selective search boxes can also be downloaded for VOC2007 and VOC2012.
預(yù)先計(jì)算的選擇性搜索框也可以下載VOC2007和VOC2012。

?cd
$FRCN_ROOT ./data/scripts/fetch_selective_search_data.sh
This will populate the $FRCN_ROOT/data folder with selective_selective_data.
這將使用selective_selective_data填充$ FRCN_ROOT / data文件夾。
?Download pre-trained ImageNet models
Pre-trained ImageNet models can be downloaded for the three networks described in the paper: CaffeNet (model S), VGG_CNN_M_1024 (model M), and VGG16 (model L).
下載預(yù)先訓(xùn)練的ImageNet模型
可以下載本文中描述的三種網(wǎng)絡(luò)的預(yù)訓(xùn)練的ImageNet模型:CaffeNet(S型),,VGG_CNN_M_1024(M型)和VGG16(L型),。
?cd
$FRCN_ROOT
./data/scripts/fetch_imagenet_models.sh
These models are all available in the Caffe Model Zoo, but are provided here for your convenience.
這些模型都可在Caffe Model Zoo中找到,,但為了您的方便,,這里提供了這些模型,。
?Usage
Train a Fast R-CNN detector. For example, train a VGG16 network on VOC 2007 trainval:
訓(xùn)練一個(gè)快速的R-CNN探測(cè)器,。 例如,在VOC 2007 trainval上培訓(xùn)VGG16網(wǎng)絡(luò):

?./tools/train_net.py --gpu 0 --solver models/VGG16/solver.prototxt --weights data/imagenet_models/VGG16.v2.caffemodel
If you see this error
如果你看到這個(gè)錯(cuò)誤

?EnvironmentError: MATLAB command 'matlab' not found. Please add 'matlab' to your PATH.
then you need to make sure the matlab binary is in your $PATH. MATLAB is currently required for PASCAL VOC evaluation.

EnvironmentError:找不到MATLAB命令'matlab'。 請(qǐng)將'matlab'添加到PATH中,。

那么你需要確保matlab二進(jìn)制文件在你的$ PATH中,。 目前MATLAB需要進(jìn)行PASCAL VOC評(píng)估。


?Test
 a Fast R-CNN detector. For example, test the VGG 16 network on VOC 2007 test:
測(cè)試快速R-CNN檢測(cè)器,。 例如,在VOC 2007測(cè)試中測(cè)試VGG 16網(wǎng)絡(luò):

?./tools/test_net.py --gpu 1 --def models/VGG16/test.prototxt --net output/default/voc_2007_trainval/vgg16_fast_rcnn_iter_40000.caffemodel
Test output is written underneath $FRCN_ROOT/output.
測(cè)試輸出寫在$ FRCN_ROOT / output下面,。

?Compress
 a Fast R-CNN model using truncated SVD on the fully-connected layers:
在完全連接的層上使用截?cái)郤VD壓縮快速R-CNN模型:

?./tools/compress_net.py --def models/VGG16/test.prototxt --def-svd models/VGG16/compressed/test.prototxt --net output/default/voc_2007_trainval/vgg16_fast_rcnn_iter_40000.caffemodel # Test the model you just compressed 測(cè)試你剛剛壓縮的模型 ./tools/test_net.py --gpu 0 --def models/VGG16/compressed/test.prototxt --net output/default/voc_2007_trainval/vgg16_fast_rcnn_iter_40000_svd_fc6_1024_fc7_256.caffemodel

Experiment scripts
?實(shí)驗(yàn)?zāi)_本

Scripts to reproduce the experiments in the paper (up to stochastic variation) are provided in $FRCN_ROOT/experiments/scripts. Log files for experiments are located in experiments/logs.

Note: Until recently (commit a566e39), the RNG seed for Caffe was not fixed during training. Now it's fixed, unless train_net.py is called with the --rand flag. Results generated before this commit will have some stochastic variation.

在$ FRCN_ROOT / experiments / scripts中提供了在本文中重現(xiàn)實(shí)驗(yàn)的腳本(達(dá)到隨機(jī)變化),。 用于實(shí)驗(yàn)的日志文件位于experiments/logs.

注意:直到最近(提交a566e39),,Caffe的RNG種子在訓(xùn)練期間并未修復(fù)。 現(xiàn)在它是固定的,,除非train_net.py用--rand標(biāo)志調(diào)用,。 在此提交之前生成的結(jié)果將具有一些隨機(jī)變化。


?Extra downloads
?額外下載

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,,所有內(nèi)容均由用戶發(fā)布,,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式,、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙,。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào),。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多