(1)a=2時(shí),f(x)=lnx+1?x2x,(x>0),且f(1)=0,
又∵f(x)=2x?12x2,(x>0),,
∴f(x)在x=1處的切線斜率為f′(1)=12,,
故切線的斜率為y=12(x?1),
即x?2y?1=0,;
(2)由題意,f′(x)=1x?1ax2=ax?1ax2,,
∵a為大于零的常數(shù),
若使函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增,,
則使ax?1?0在區(qū)間[1,+∞)上恒成立,,
即a?1?0,故a?1,;
(3)①當(dāng)a?1時(shí),f(x)在區(qū)間[1,2]上單調(diào)遞增,,
則fmin(x)=f(1)=0;
②當(dāng)0a?12時(shí),f′(x)在區(qū)間[1,2]恒不大于0,,
f(x)在區(qū)間[1,2]上單調(diào)遞減,,
則fmin(x)=f(2)=ln2?12a;
③當(dāng)12a1時(shí),令f′(x)=0可解得,x=1a∈(1,2),;
易知f(x)在區(qū)間[1,1a]單調(diào)遞減,在[1a,2]上單調(diào)遞增,
則fmin(x)=f(1a)=ln1a+1?1a,;
綜上所述,,
①當(dāng)a?1時(shí),fmin(x)=0;
②當(dāng)12a1時(shí),fmin(x)=ln1a+1?1a,;
③當(dāng)0a?12時(shí),fmin(x)=ln2?12a.