一.基礎(chǔ):Numpy的主要數(shù)據(jù)類(lèi)型是ndarray,,即多維數(shù)組,。它有以下幾個(gè)屬性: ndarray.ndim:數(shù)組的維數(shù) ndarray.shape:數(shù)組每一維的大小 ndarray.size:數(shù)組中全部元素的數(shù)量 ndarray.dtype:數(shù)組中元素的類(lèi)型(numpy.int32, numpy.int16, and numpy.float64等) ndarray.itemsize:每個(gè)元素占幾個(gè)字節(jié) 例子: >>> import numpy as np >>> a = np.arange(15).reshape(3, 5) >>> a array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) >>> a.shape (3, 5) >>> a.ndim2>>> a.dtype.name'int64'>>> a.itemsize8>>> a.size15>>> type(a) <type 'numpy.ndarray'> >>> b = np.array([6, 7, 8]) >>> b array([6, 7, 8]) >>> type(b) <type 'numpy.ndarray'>
二.創(chuàng)建數(shù)組:使用array函數(shù)講tuple和list轉(zhuǎn)為array: >>> import numpy as np>>> a = np.array([2,3,4])>>> a array([2, 3, 4])>>> a.dtype dtype('int64')>>> b = np.array([1.2, 3.5, 5.1])>>> b.dtype dtype('float64')
多維數(shù)組: >>> b = np.array([(1.5,2,3), (4,5,6)]) >>> b array([[ 1.5, 2. , 3. ], [ 4. , 5. , 6. ]])
生成數(shù)組的同時(shí)指定類(lèi)型: >>> c = np.array( [ [1,2], [3,4] ], dtype=complex ) >>> c array([[ 1.+0.j, 2.+0.j], [ 3.+0.j, 4.+0.j]])
生成數(shù)組并賦為特殊值: ones:全1 zeros:全0 empty:隨機(jī)數(shù),,取決于內(nèi)存情況 >>> np.zeros( (3,4) ) array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]]) >>> np.ones( (2,3,4), dtype=np.int16 ) # dtype can also be specified array([[[ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1]], [[ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1]]], dtype=int16) >>> np.empty( (2,3) ) # uninitialized, output may vary array([[ 3.73603959e-262, 6.02658058e-154, 6.55490914e-260], [ 5.30498948e-313, 3.14673309e-307, 1.00000000e+000]])
生成均勻分布的array: arange(最小值,,最大值,,步長(zhǎng))(左閉右開(kāi)) linspace(最小值,,最大值,,元素?cái)?shù)量) >>> np.arange( 10, 30, 5 )array([10, 15, 20, 25]) >>> np.arange( 0, 2, 0.3 ) # it accepts float argumentsarray([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8]) >>> np.linspace( 0, 2, 9 ) # 9 numbers from 0 to 2array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ]) >>> x = np.linspace( 0, 2*pi, 100 ) # useful to evaluate function at lots of points
三.基本運(yùn)算:整個(gè)array按順序參與運(yùn)算: >>> a = np.array( [20,30,40,50] )>>> b = np.arange( 4 )>>> b array([0, 1, 2, 3])>>> c = a-b>>> c array([20, 29, 38, 47])>>> b**2array([0, 1, 4, 9])>>> 10*np.sin(a) array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854])>>> a<35array([ True, True, False, False], dtype=bool)
兩個(gè)二維使用*符號(hào)仍然是按位置一對(duì)一相乘,,如果想表示矩陣乘法,使用dot: >>> A = np.array( [[1,1], ... [0,1]] ) >>> B = np.array( [[2,0], ... [3,4]] ) >>> A*B # elementwise product array([[2, 0], [0, 4]]) >>> A.dot(B) # matrix product array([[5, 4], [3, 4]]) >>> np.dot(A, B) # another matrix product array([[5, 4], [3, 4]])
內(nèi)置函數(shù)(min,max,sum),,同時(shí)可以使用axis指定對(duì)哪一維進(jìn)行操作: >>> b = np.arange(12).reshape(3,4) >>> b array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> >>> b.sum(axis=0) # sum of each column array([12, 15, 18, 21]) >>> >>> b.min(axis=1) # min of each row array([0, 4, 8]) >>> >>> b.cumsum(axis=1) # cumulative sum along each row array([[ 0, 1, 3, 6], [ 4, 9, 15, 22], [ 8, 17, 27, 38]])
Numpy同時(shí)提供很多全局函數(shù) >>> B = np.arange(3) >>> Barray([0, 1, 2])>>> np.exp(B)array([ 1. , 2.71828183, 7.3890561 ])>>> np.sqrt(B)array([ 0. , 1. , 1.41421356])>>> C = np.array([2., -1., 4.])>>> np.add(B, C)array([ 2., 0., 6.])
四.尋址,,索引和遍歷:一維數(shù)組的遍歷語(yǔ)法和python list類(lèi)似: >>> a = np.arange(10)**3>>> aarray([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]) >>> a[2]8>>> a[2:5] array([ 8, 27, 64]) >>> a[:6:2] = -1000 # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000>>> aarray([-1000, 1, -1000, 27, -1000, 125, 216, 343, 512, 729]) >>> a[ : :-1] # reversed aarray([ 729, 512, 343, 216, 125, -1000, 27, -1000, 1, -1000]) >>> for i in a:... print(i**(1/3.))...nan1.0nan3.0nan5.06.07.08.09.0
多維數(shù)組的訪(fǎng)問(wèn)通過(guò)給每一維指定一個(gè)索引,順序是先高維再低維: >>> def f(x,y):... return 10*x+y ...>>> b = np.fromfunction(f,(5,4),dtype=int)>>> b array([[ 0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33], [40, 41, 42, 43]])>>> b[2,3]23>>> b[0:5, 1] # each row in the second column of barray([ 1, 11, 21, 31, 41])>>> b[ : ,1] # equivalent to the previous examplearray([ 1, 11, 21, 31, 41])>>> b[1:3, : ] # each column in the second and third row of barray([[10, 11, 12, 13], [20, 21, 22, 23]]) When fewer indices are provided than the number of axes, the missing indices are considered complete slices: >>>>>> b[-1] # the last row. Equivalent to b[-1,:]array([40, 41, 42, 43])
…符號(hào)表示將所有未指定索引的維度均賦為 : ,,:在python中表示該維所有元素: >>> c = np.array( [[[ 0, 1, 2], # a 3D array (two stacked 2D arrays)... [ 10, 12, 13]],... [[100,101,102],... [110,112,113]]]) >>> c.shape (2, 2, 3) >>> c[1,...] # same as c[1,:,:] or c[1]array([[100, 101, 102], [110, 112, 113]]) >>> c[...,2] # same as c[:,:,2]array([[ 2, 13], [102, 113]])
遍歷: 如果只想遍歷整個(gè)array可以直接使用: >>> for row in b:... print(row)...[0 1 2 3] [10 11 12 13] [20 21 22 23] [30 31 32 33] [40 41 42 43]
但是如果要對(duì)每個(gè)元素進(jìn)行操作,,就要使用flat屬性,,這是一個(gè)遍歷整個(gè)數(shù)組的迭代器 >>> for element in b.flat:... print(element)...012310111213202122233031323340414243
|