久久国产成人av_抖音国产毛片_a片网站免费观看_A片无码播放手机在线观看,色五月在线观看,亚洲精品m在线观看,女人自慰的免费网址,悠悠在线观看精品视频,一级日本片免费的,亚洲精品久,国产精品成人久久久久久久

分享

Python Numpy 數(shù)組的初始化和基本操作

 公彥棟 2017-11-24

一.基礎(chǔ):

Numpy的主要數(shù)據(jù)類(lèi)型是ndarray,,即多維數(shù)組,。它有以下幾個(gè)屬性:

ndarray.ndim:數(shù)組的維數(shù)
ndarray.shape:數(shù)組每一維的大小
ndarray.size:數(shù)組中全部元素的數(shù)量
ndarray.dtype:數(shù)組中元素的類(lèi)型(numpy.int32, numpy.int16, and numpy.float64等)
ndarray.itemsize:每個(gè)元素占幾個(gè)字節(jié)

例子:

>>> import numpy as np
>>> a = np.arange(15).reshape(3, 5)
>>> a
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]]
)
>>> a.shape
(3, 5)
>>> a.ndim2>>> a.dtype.name'int64'>>> a.itemsize8>>> a.size15>>> type(a)
<type 'numpy.ndarray'>
>>> b = np.array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
<type 'numpy.ndarray'>

二.創(chuàng)建數(shù)組:

使用array函數(shù)講tuple和list轉(zhuǎn)為array:

>>> import numpy as np>>> a = np.array([2,3,4])>>> a
array([2, 3, 4])>>> a.dtype
dtype('int64')>>> b = np.array([1.2, 3.5, 5.1])>>> b.dtype
dtype('float64')

多維數(shù)組:

>>> b = np.array([(1.5,2,3), (4,5,6)])
>>> b
array([[ 1.5, 2. , 3. ],
[ 4. , 5. , 6. ]]
)

生成數(shù)組的同時(shí)指定類(lèi)型:

>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j, 2.+0.j],
[ 3.+0.j, 4.+0.j]]
)

生成數(shù)組并賦為特殊值:
ones:全1
zeros:全0
empty:隨機(jī)數(shù),,取決于內(nèi)存情況

>>> np.zeros( (3,4) )
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]]
)
>>> np.ones( (2,3,4), dtype=np.int16 ) # dtype can also be specified
array([[[ 1, 1, 1, 1],
[ 1, 1, 1, 1],
[ 1, 1, 1, 1]]
,
[[ 1, 1, 1, 1],
[ 1, 1, 1, 1],
[ 1, 1, 1, 1]]
], dtype=int16)
>>> np.empty( (2,3) ) # uninitialized, output may vary
array([[ 3.73603959e-262, 6.02658058e-154, 6.55490914e-260],
[ 5.30498948e-313, 3.14673309e-307, 1.00000000e+000]]
)

生成均勻分布的array:
arange(最小值,,最大值,,步長(zhǎng))(左閉右開(kāi))
linspace(最小值,,最大值,,元素?cái)?shù)量)

>>> np.arange( 10, 30, 5 )array([10, 15, 20, 25])
>>> np.arange( 0, 2, 0.3 ) # it accepts float argumentsarray([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
>>> np.linspace( 0, 2, 9 ) # 9 numbers from 0 to 2array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ])
>>> x = np.linspace( 0, 2*pi, 100 ) # useful to evaluate function at lots of points

三.基本運(yùn)算:

整個(gè)array按順序參與運(yùn)算:

>>> a = np.array( [20,30,40,50] )>>> b = np.arange( 4 )>>> b
array([0, 1, 2, 3])>>> c = a-b>>> c
array([20, 29, 38, 47])>>> b**2array([0, 1, 4, 9])>>> 10*np.sin(a)
array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854])>>> a<35array([ True, True, False, False], dtype=bool)

兩個(gè)二維使用*符號(hào)仍然是按位置一對(duì)一相乘,,如果想表示矩陣乘法,使用dot:

>>> A = np.array( [[1,1],
... [0,1]]
)
>>> B = np.array( [[2,0],
... [3,4]]
)
>>> A*B # elementwise product
array([[2, 0],
[0, 4]]
)
>>> A.dot(B) # matrix product
array([[5, 4],
[3, 4]]
)
>>> np.dot(A, B) # another matrix product
array([[5, 4],
[3, 4]]
)

內(nèi)置函數(shù)(min,max,sum),,同時(shí)可以使用axis指定對(duì)哪一維進(jìn)行操作:

>>> b = np.arange(12).reshape(3,4)
>>> b
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]]
)
>>>
>>> b.sum(axis=0) # sum of each column
array([12, 15, 18, 21])
>>>
>>> b.min(axis=1) # min of each row
array([0, 4, 8])
>>>
>>> b.cumsum(axis=1) # cumulative sum along each row
array([[ 0, 1, 3, 6],
[ 4, 9, 15, 22],
[ 8, 17, 27, 38]]
)

Numpy同時(shí)提供很多全局函數(shù)

>>> B = np.arange(3)
>>> Barray([0, 1, 2])>>> np.exp(B)array([ 1. , 2.71828183, 7.3890561 ])>>> np.sqrt(B)array([ 0. , 1. , 1.41421356])>>> C = np.array([2., -1., 4.])>>> np.add(B, C)array([ 2., 0., 6.])

四.尋址,,索引和遍歷:

一維數(shù)組的遍歷語(yǔ)法和python list類(lèi)似:

>>> a = np.arange(10)**3>>> aarray([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729])
>>> a[2]8>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1000 # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000>>> aarray([-1000, 1, -1000, 27, -1000, 125, 216, 343, 512, 729])
>>> a[ : :-1] # reversed aarray([ 729, 512, 343, 216, 125, -1000, 27, -1000, 1, -1000])
>>> for i in a:... print(i**(1/3.))...nan1.0nan3.0nan5.06.07.08.09.0

多維數(shù)組的訪(fǎng)問(wèn)通過(guò)給每一維指定一個(gè)索引,順序是先高維再低維:

>>> def f(x,y):... return 10*x+y
...>>> b = np.fromfunction(f,(5,4),dtype=int)>>> b
array([[ 0, 1, 2, 3],
[10, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 43]])>>> b[2,3]23>>> b[0:5, 1] # each row in the second column of barray([ 1, 11, 21, 31, 41])>>> b[ : ,1] # equivalent to the previous examplearray([ 1, 11, 21, 31, 41])>>> b[1:3, : ] # each column in the second and third row of barray([[10, 11, 12, 13],
[20, 21, 22, 23]])
When fewer indices are provided than the number of axes, the missing indices are considered complete slices:
>>>>>> b[-1] # the last row. Equivalent to b[-1,:]array([40, 41, 42, 43])

…符號(hào)表示將所有未指定索引的維度均賦為 : ,,:在python中表示該維所有元素:

>>> c = np.array( [[[ 0, 1, 2], # a 3D array (two stacked 2D arrays)... [ 10, 12, 13]],... [[100,101,102],... [110,112,113]]])
>>> c.shape
(2, 2, 3)
>>> c[1,...] # same as c[1,:,:] or c[1]array([[100, 101, 102],
[110, 112, 113]])
>>> c[...,2] # same as c[:,:,2]array([[ 2, 13],
[102, 113]])

遍歷:
如果只想遍歷整個(gè)array可以直接使用:

>>> for row in b:... print(row)...[0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]

但是如果要對(duì)每個(gè)元素進(jìn)行操作,,就要使用flat屬性,,這是一個(gè)遍歷整個(gè)數(shù)組的迭代器

>>> for element in b.flat:... print(element)...012310111213202122233031323340414243

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶(hù)發(fā)布,,不代表本站觀(guān)點(diǎn),。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買(mǎi)等信息,,謹(jǐn)防詐騙,。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào),。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶(hù) 評(píng)論公約

    類(lèi)似文章 更多