目前流行的深度學(xué)習(xí)庫有Caffe,,Keras,Theano,,本文采用谷歌開源的曾用來制作AlphaGo的深度學(xué)習(xí)系統(tǒng)Tensorflow,。 1:安裝Tensorflow 最早TensorFlow只支持mac和Linux系統(tǒng),,目前也支持windows系統(tǒng),但要求python3.5 (64bit)版本,。TensorFlow有cpu和gpu版本,,由于本文使用服務(wù)器是NVIDIA顯卡,因此安裝gpu版本,,在cmd命令行鍵入 pip install --upgrade tensorflow-gpu 如果出現(xiàn)錯誤“Cannot remove entries from nonexistent file”,,執(zhí)行以下命令 “pip install --upgrade -I setuptools”,安裝成功出現(xiàn)以下界面 2:安裝CUDA庫 用gpu來運行Tensorflow還需要配置CUDA和cuDnn庫,, 用以下link下載win10(64bit)版本CUDA安裝包,,大小約為1.2G https://developer./cuda-downloads 安裝cuda_8.0.61_win10.exe,,完成后配置系統(tǒng)變量,在系統(tǒng)變量中的CUDA_PATH中,,加上三個路徑,, C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin\lib\x64 3:安裝cuDnn庫 用以下link下載cuDnn庫 下載解壓后,為了在運行tensorflow的時候也能將這個庫加載進去,,我們要將解壓后的文件拷到CUDA對應(yīng)的文件夾下C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0 4:測試安裝 在Pycharm新建一個py文件鍵入 import tensorflow as tf hello = tf.constant('Hello world, TensorFlow!') sess = tf.Session() print(sess.run(hello)) 如果能夠輸出'Hello, TensorFlow!'像下面這樣就代表配置成功了,。 1: 導(dǎo)入必要的模塊 import sys import cv2 import numpy as np import tensorflow as tf 2: 定義CNN的基本組件 按照LeNet5 的定義,采用32*32 圖像輸入,,CNN的基本組件包括卷積C1,,采樣層S1、卷積C2,,采樣層S2,、全結(jié)合層1、分類層2 3:訓(xùn)練CNN 將輸入圖像縮小至32*32大小,,采用opencv中的resize函數(shù) 其變換參數(shù)有
CV_INTER_NN - 最近鄰插值, CV_INTER_LINEAR - 雙線性插值 (缺省使用) CV_INTER_AREA - 使用象素關(guān)系重采樣,。當(dāng)圖像縮小時候,該方法可以避免波紋出現(xiàn),。當(dāng)圖像放大時,,類似于 CV_INTER_NN 方法.. CV_INTER_CUBIC - 立方插值. output=cv2.resize(img,(32,32),interpolation=cv2.INTER_CUBIC) 核心代碼如下: class CNNetwork: NUM_CLASSES = 2 #分兩類 IMAGE_SIZE = 28 IMAGE_PIXELS = IMAGE_SIZE*IMAGE_SIZE*3
def inference(images_placeholder, keep_prob): def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') x_image = tf.reshape(images_placeholder, [-1, 28, 28, 1]) with tf.name_scope('conv1') as scope: W_conv1 = weight_variable([5, 5, 3, 32]) b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) with tf.name_scope('pool1') as scope: h_pool1 = max_pool_2x2(h_conv1) with tf.name_scope('conv2') as scope: W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) with tf.name_scope('pool2') as scope: h_pool2 = max_pool_2x2(h_conv2) with tf.name_scope('fc1') as scope: W_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) with tf.name_scope('fc2') as scope: W_fc2 = weight_variable([1024, NUM_CLASSES]) b_fc2 = bias_variable([NUM_CLASSES]) with tf.name_scope('softmax') as scope: y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) return y_conv
if __name__ == '__main__': test_image = [] filenames = [] for i in range(1, len(sys.argv)): img = cv2.imread(sys.argv[i]) img = cv2.resize(img, (28, 28)) test_image.append(img.flatten().astype(np.float32)/255.0) filenames.append(sys.argv[i]) test_image = np.asarray(test_image) images_placeholder = tf.placeholder("float", shape=(None, IMAGE_PIXELS)) labels_placeholder = tf.placeholder("float", shape=(None, NUM_CLASSES)) keep_prob = tf.placeholder("float") logits = inference(images_placeholder, keep_prob) sess = tf.InteractiveSession() saver = tf.train.Saver() sess.run(tf.initialize_all_variables()) saver.restore(sess, "model.ckpt") for i in range(len(test_image)): pred = np.argmax(logits.eval(feed_dict={ images_placeholder: [test_image[i]], keep_prob: 1.0 })[0]) pred2 = logits.eval(feed_dict={ images_placeholder: [test_image[i]], keep_prob: 1.0 })[0] print filenames[i],pred,"{0:10.8f}".format(pred2[0]),"{0:10.8f}".format(pred2[1]) |
|
來自: 陳永正的圖書館 > 《TensorFlow》