久久国产成人av_抖音国产毛片_a片网站免费观看_A片无码播放手机在线观看,色五月在线观看,亚洲精品m在线观看,女人自慰的免费网址,悠悠在线观看精品视频,一级日本片免费的,亚洲精品久,国产精品成人久久久久久久

分享

Tensorflow的CNN教程解析

 雪柳花明 2017-03-14

之前的博客我們已經對RNN模型有了個粗略的了解。作為一個時序性模型,,RNN的強大不需要我在這里重復了,。今天,讓我們來看看除了RNN外另一個特殊的,,同時也是廣為人知的強大的神經網絡模型,即CNN模型。今天的討論主要是基于Tensorflow的CIFAR10教程,,不過作為對比,我們也會對Tensorflow的MINST教程作解析以及對比,。很快大家就會發(fā)現,,邏輯上考慮,其實內容都是大同小異的,。由于所對應的目標不一樣,,在數據處理方面可能存在著些許差異,這里我們以CIFAR10的為基準,,有興趣的朋友歡迎去閱讀并學習MNIST的過程,,地址點擊這里。CIFAR10的英文教程在Tensorflow官網上可以獲得,,教程代碼地址點擊這里,。

CNN簡介

CNN是一個神奇的深度學習框架,也是深度學習學科里的一個異類,。在被譽為AI寒冬的90年末到2000年初,,在大部分學者都棄坑的情況下,CNN的效用卻不減反增,,感謝Yann LeCun,!CNN的架構其實很符合其名,Convolutional Neural Network,,CNN在運做的開始運用了卷積(convolution)的概念,,外加pooling等方式在多次卷積了圖像并形成多個特征圖后,輸入被平鋪開進入一個完全連接的多層神經網絡里(fully connected network)里,,并由輸出的softmax來判斷圖片的分類情況,。該框架的發(fā)展史也很有趣,早在90年代末,,以LeCun命名的Le-Net5就已經聞名,。在深度學習火熱后,更多的框架變種也接踵而至,,較為聞名的包括多倫多大學的AlexNet,,谷歌的GoogLeNet,牛津的OxfordNet外還有Network in Network(NIN),VGG16等多個network,。最近,,對物體識別的研究開發(fā)了RCNN框架,可見在深度學習發(fā)展迅猛的今天,,CNN框架依然是很多著名研究小組的課題,,特別是在了解了Alpha-Go的運作里也可以看到CNN的身影,可見其能力,!至于CNN模型的基礎構架,,這方面的資源甚多,就不一一列舉了,。

CIFAR10代碼分析

在運行CIFAR10代碼時,,你只需要下載該代碼,然后cd到代碼目錄后直接輸入python cifar10_train.py就可以了,。默認的迭代步驟為100萬步,,每一步驟需要約3~4秒,運行5小時可以完成近10萬步,。由于根據cifar10_train.py的描述10萬步的準確率為86%左右,,我們運行近5個小時左右就可以了,沒必要運行全部的100萬步,。查看結果時,,運行python cifar_10_eval.py就可以了。由于模型被存儲在了tmp目錄里,,eval文件可以找尋到最近保存的模型并運行該模型,,所以還是很方便的。這個系統(tǒng)在運行后可以從照片里識別10種不同的物體,,包括飛機等,。這么好玩的系統(tǒng),,快讓我們來看一看是怎么實現的吧,!

首先,讓我們來看下cifar1_train.py文件,。文件里的核心為train函數,,它的表現如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def train():
  '''Train CIFAR-10 for a number of steps.'''
  with tf.Graph().as_default():
    global_step = tf.Variable(0, trainable=False)
    # Get images and labels for CIFAR-10.
    # 輸入選用的是distored_inputs函數
    images, labels = cifar10.distorted_inputs()
    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images)
    # Calculate loss.
    loss = cifar10.loss(logits, labels)
    # Build a Graph that trains the model with one batch of examples and
    # updates the model parameters.
    train_op = cifar10.train(loss, global_step)
    # Create a saver.
    saver = tf.train.Saver(tf.all_variables())
    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.merge_all_summaries()
    # Build an initialization operation to run below.
    init = tf.initialize_all_variables()
    # Start running operations on the Graph.
    sess = tf.Session(config=tf.ConfigProto(
        log_device_placement=FLAGS.log_device_placement))
    sess.run(init)
    # Start the queue runners.
    tf.train.start_queue_runners(sess=sess)
    summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph)
     
    # 在最高的迭代步驟數里進行循環(huán)迭代
    for step in xrange(FLAGS.max_steps):
      start_time = time.time()
      _, loss_value = sess.run([train_op, loss])
      duration = time.time() - start_time
      assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
      # 每10個輸入數據顯示次step,loss,,時間等運行數據
      if step % 10 == 0:
        num_examples_per_step = FLAGS.batch_size
        examples_per_sec = num_examples_per_step / duration
        sec_per_batch = float(duration)
        format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                      'sec/batch)')
        print (format_str % (datetime.now(), step, loss_value,
                             examples_per_sec, sec_per_batch))
      # 每100個輸入數據將網絡的狀況體現在summary里
      if step % 100 == 0:
        summary_str = sess.run(summary_op)
        summary_writer.add_summary(summary_str, step)
      # Save the model checkpoint periodically.
      # 每1000個輸入數據保存次模型
      if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
        checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
        saver.save(sess, checkpoint_path, global_step=step)

這個訓練函數本身邏輯很清晰,,除了它運用了大量的cifar10.py文件里的函數外,一個值得注意的地方是輸入里應用的是distorded_inputs函數,。這個很有意思,,因為據論文表達,對輸入數據進行一定的處理后可以得到新的數據,這是增加數據存儲量的一個簡便的方法,,那么具體它是如何做到的呢?讓我們來看看這個distorded_inputs函數,。在cifar10.py文件里,distorded_inputs函數實質上是一個wrapper,,包裝了來自cifar10_input.py函數里的distorted_inputs()函數,。這個函數的邏輯如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
def distorted_inputs(data_dir, batch_size):
  '''Construct distorted input for CIFAR training using the Reader ops.
  Args:
    data_dir: Path to the CIFAR-10 data directory.
    batch_size: Number of images per batch.
  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.
  '''
  filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
               for i in xrange(1, 6)]
  for f in filenames:
    if not tf.gfile.Exists(f):
      raise ValueError('Failed to find file: ' + f)
  # Create a queue that produces the filenames to read.
  filename_queue = tf.train.string_input_producer(filenames)
  # Read examples from files in the filename queue.
  read_input = read_cifar10(filename_queue)
  reshaped_image = tf.cast(read_input.uint8image, tf.float32)
  height = IMAGE_SIZE
  width = IMAGE_SIZE
  # Image processing for training the network. Note the many random
  # distortions applied to the image.
  # Randomly crop a [height, width] section of the image.
  # 步驟1:隨機截取一個以[高,寬]為大小的圖矩陣,。
  distorted_image = tf.random_crop(reshaped_image, [height, width, 3])
  # Randomly flip the image horizontally.
  # 步驟2:隨機顛倒圖片的左右,。概率為50%
  distorted_image = tf.image.random_flip_left_right(distorted_image)
  # Because these operations are not commutative, consider randomizing
  # the order their operation.
  #  步驟3:隨機改變圖片的亮度以及色彩對比。
  distorted_image = tf.image.random_brightness(distorted_image,
                                               max_delta=63)
  distorted_image = tf.image.random_contrast(distorted_image,
                                             lower=0.2, upper=1.8)
  # Subtract off the mean and divide by the variance of the pixels.
  float_image = tf.image.per_image_whitening(distorted_image)
  # Ensure that the random shuffling has good mixing properties.
  min_fraction_of_examples_in_queue = 0.4
  min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN *
                           min_fraction_of_examples_in_queue)
  print ('Filling queue with %d CIFAR images before starting to train. '
         'This will take a few minutes.' % min_queue_examples)
  # Generate a batch of images and labels by building up a queue of examples.
  return _generate_image_and_label_batch(float_image, read_input.label,
                                         min_queue_examples, batch_size,
                                         shuffle=True)

這里每一張圖片被隨機的截取一片圖后有一定的概率被翻轉,,改變亮度對比等步驟,。另外,最后一段的意思為在queue里有了不少于40%的數據的時候訓練才能開始,。那么在測試的時候,,我們需要經過這個步驟么?答案是非也,。在cifar10_input.py文件里,,distorded_inputs函數的下方,一個名為inputs的函數代表了輸入被運用在eval時的邏輯,。在輸入參數方面,,這個inputs函數在保留了distorded_inputs的同時增加了一個名為eval_data的參數,一個bool參數代表了是運用訓練的數據還是測試的數據,。下面,,讓我們來大概看下這個函數的邏輯。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
def inputs(eval_data, data_dir, batch_size):
  '''Construct input for CIFAR evaluation using the Reader ops.
  Args:
    eval_data: bool, indicating if one should use the train or eval data set.
    data_dir: Path to the CIFAR-10 data directory.
    batch_size: Number of images per batch.
  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.
  '''
  if not eval_data:
    filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
                 for i in xrange(1, 6)]
    num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
  else:
    filenames = [os.path.join(data_dir, 'test_batch.bin')]
    num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL
  for f in filenames:
    if not tf.gfile.Exists(f):
      raise ValueError('Failed to find file: ' + f)
  # Create a queue that produces the filenames to read.
  filename_queue = tf.train.string_input_producer(filenames)
  # Read examples from files in the filename queue.
  read_input = read_cifar10(filename_queue)
  reshaped_image = tf.cast(read_input.uint8image, tf.float32)
  height = IMAGE_SIZE
  width = IMAGE_SIZE
  # Image processing for evaluation.
  # Crop the central [height, width] of the image.
  # 截取圖片中心區(qū)域
  resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,
                                                         width, height)
  # Subtract off the mean and divide by the variance of the pixels.
  # 平衡圖片的色差
  float_image = tf.image.per_image_whitening(resized_image)
  # Ensure that the random shuffling has good mixing properties.
  min_fraction_of_examples_in_queue = 0.4
  min_queue_examples = int(num_examples_per_epoch *
                           min_fraction_of_examples_in_queue)
  # Generate a batch of images and labels by building up a queue of examples.
  return _generate_image_and_label_batch(float_image, read_input.label,
                                         min_queue_examples, batch_size,
                                         shuffle=False)

這里,,我們看到截取只有圖片的中心,,另外處理也只有平衡色差。但是,,聰明的讀者朋友一定能想到,,如果一張關于飛機的圖片是以飛機頭為圖片中心的,而訓練集合里所有的飛機圖片都是以機翼為圖片中心的話,,我們之前的distorded_inputs函數將有機會截取飛機頭的區(qū)域,,從而給我們的測試圖片提供相似信息。另外,,隨機調整色差也包含了平均色差,,所以我們的訓練集實質上包含了更廣,更多種的可能性,,故可想而之會有機會得到更好的效果,。

那么,講了關于輸入的小竅門,我們應該來看看具體的CNN模型了,。如何制造一個CNN模型呢,?讓我們先來看一個簡單的版本,即MNIST教程里的模型:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# The variables below hold all the trainable weights. They are passed an
# initial value which will be assigned when we call:
# {tf.initialize_all_variables().run()}
conv1_weights = tf.Variable(
    tf.truncated_normal([5, 5, NUM_CHANNELS, 32],  # 5x5 filter, depth 32.
                        stddev=0.1,
                        seed=SEED, dtype=data_type()))
conv1_biases = tf.Variable(tf.zeros([32], dtype=data_type()))
conv2_weights = tf.Variable(tf.truncated_normal(
    [5, 5, 32, 64], stddev=0.1,
    seed=SEED, dtype=data_type()))
conv2_biases = tf.Variable(tf.constant(0.1, shape=[64], dtype=data_type()))
fc1_weights = tf.Variable(  # fully connected, depth 512.
    tf.truncated_normal([IMAGE_SIZE // 4 * IMAGE_SIZE // 4 * 64, 512],
                        stddev=0.1,
                        seed=SEED,
                        dtype=data_type()))
fc1_biases = tf.Variable(tf.constant(0.1, shape=[512], dtype=data_type()))
fc2_weights = tf.Variable(tf.truncated_normal([512, NUM_LABELS],
                                              stddev=0.1,
                                              seed=SEED,
                                              dtype=data_type()))
fc2_biases = tf.Variable(tf.constant(
    0.1, shape=[NUM_LABELS], dtype=data_type()))
# We will replicate the model structure for the training subgraph, as well
# as the evaluation subgraphs, while sharing the trainable parameters.
def model(data, train=False):
  '''The Model definition.'''
  # 2D convolution, with 'SAME' padding (i.e. the output feature map has
  # the same size as the input). Note that {strides} is a 4D array whose
  # shape matches the data layout: [image index, y, x, depth].
  conv = tf.nn.conv2d(data,
                      conv1_weights,
                      strides=[1, 1, 1, 1],
                      padding='SAME')
  # Bias and rectified linear non-linearity.
  relu = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases))
  # Max pooling. The kernel size spec {ksize} also follows the layout of
  # the data. Here we have a pooling window of 2, and a stride of 2.
  pool = tf.nn.max_pool(relu,
                        ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1],
                        padding='SAME')
  conv = tf.nn.conv2d(pool,
                      conv2_weights,
                      strides=[1, 1, 1, 1],
                      padding='SAME')
  relu = tf.nn.relu(tf.nn.bias_add(conv, conv2_biases))
  pool = tf.nn.max_pool(relu,
                        ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1],
                        padding='SAME')
  # Reshape the feature map cuboid into a 2D matrix to feed it to the
  # fully connected layers.
  pool_shape = pool.get_shape().as_list()
  reshape = tf.reshape(
      pool,
      [pool_shape[0], pool_shape[1] * pool_shape[2] * pool_shape[3]])
  # Fully connected layer. Note that the '+' operation automatically
  # broadcasts the biases.
  hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights) + fc1_biases)
  # Add a 50% dropout during training only. Dropout also scales
  # activations such that no rescaling is needed at evaluation time.
  if train:
    hidden = tf.nn.dropout(hidden, 0.5, seed=SEED)
  return tf.matmul(hidden, fc2_weights) + fc2_biases
# Training computation: logits + cross-entropy loss.
logits = model(train_data_node, True)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
    logits, train_labels_node))
# L2 regularization for the fully connected parameters.
regularizers = (tf.nn.l2_loss(fc1_weights) + tf.nn.l2_loss(fc1_biases) +
                tf.nn.l2_loss(fc2_weights) + tf.nn.l2_loss(fc2_biases))
# Add the regularization term to the loss.
loss += 5e-4 * regularizers
# Optimizer: set up a variable that's incremented once per batch and
# controls the learning rate decay.
batch = tf.Variable(0, dtype=data_type())
# Decay once per epoch, using an exponential schedule starting at 0.01.
learning_rate = tf.train.exponential_decay(
    0.01,                # Base learning rate.
    batch * BATCH_SIZE,  # Current index into the dataset.
    train_size,          # Decay step.
    0.95,                # Decay rate.
    staircase=True)
# Use simple momentum for the optimization.
optimizer = tf.train.MomentumOptimizer(learning_rate,
                                       0.9).minimize(loss,
                                                     global_step=batch)
# Predictions for the current training minibatch.
train_prediction = tf.nn.softmax(logits)
# Predictions for the test and validation, which we'll compute less often.
eval_prediction = tf.nn.softmax(model(eval_data))

這段代碼很直白,,在定義了convolution1,convolution2,fully_connected1和fully_connected2層神經網絡的weight和biases參數后,,在模型函數里,我們通過conv2d, relu, max_pool等方式在兩次重復后將得到的結果重新整理后輸入那個fully connected的神經網絡中,,即matmul(reshape,fc1_weights) + fc1_biases,。之后再經歷了第二層的fully connected net后得到logits。定義loss以及optimizer等常見的過程后結果是由softmax來取得,。這個邏輯我們在CIFAR10里也會見到,,它的表達如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
def inference(images):
  '''Build the CIFAR-10 model.
  Args:
    images: Images returned from distorted_inputs() or inputs().
  Returns:
    Logits.
  '''
  # We instantiate all variables using tf.get_variable() instead of
  # tf.Variable() in order to share variables across multiple GPU training runs.
  # If we only ran this model on a single GPU, we could simplify this function
  # by replacing all instances of tf.get_variable() with tf.Variable().
  #
  # conv1
  with tf.variable_scope('conv1') as scope:
    # 輸入的圖片由于是彩圖,有三個channel,,所以在conv2d中,,我們規(guī)定
    # 輸出為64個channel的feature map。
    kernel = _variable_with_weight_decay('weights', shape=[5, 5, 3, 64],
                                         stddev=1e-4, wd=0.0)
    conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
    biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))
    bias = tf.nn.bias_add(conv, biases)
    conv1 = tf.nn.relu(bias, name=scope.name)
    _activation_summary(conv1)
  # pool1
  pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
                         padding='SAME', name='pool1')
  # norm1
  norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
                    name='norm1')
  # conv2
  with tf.variable_scope('conv2') as scope:
    # 由于之前的輸出是64個channel,,即我們這里的輸入,,我們的shape就會
    # 是輸入channel數為64,輸出,,我們也規(guī)定為64
    kernel = _variable_with_weight_decay('weights', shape=[5, 5, 64, 64],
                                         stddev=1e-4, wd=0.0)
    conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME')
    biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
    bias = tf.nn.bias_add(conv, biases)
    conv2 = tf.nn.relu(bias, name=scope.name)
    _activation_summary(conv2)
  # norm2
  norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
                    name='norm2')
  # pool2
  pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1],
                         strides=[1, 2, 2, 1], padding='SAME', name='pool2')
  # local3
  with tf.variable_scope('local3') as scope:
    # Move everything into depth so we can perform a single matrix multiply.
    reshape = tf.reshape(pool2, [FLAGS.batch_size, -1])
    dim = reshape.get_shape()[1].value
    # 這里之前在reshape時的那個-1是根據tensor的大小自動定義為batch_size和
    # 剩下的,,所以我們剩下的就是一張圖的所有內容,我們將它訓練并map到384
    # 個神經元節(jié)點上
    weights = _variable_with_weight_decay('weights', shape=[dim, 384],
                                          stddev=0.04, wd=0.004)
    biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1))
    local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
    _activation_summary(local3)
  # local4
  with tf.variable_scope('local4') as scope:
    #由于我們之前的節(jié)點有384個,,這里我們進一步縮減為192個,。
    weights = _variable_with_weight_decay('weights', shape=[384, 192],
                                          stddev=0.04, wd=0.004)
    biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1))
    local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
    _activation_summary(local4)
  # softmax, i.e. softmax(WX + b)
  with tf.variable_scope('softmax_linear') as scope:
    # 這是softmax輸出時的網絡,我們由192個節(jié)點map到輸出的不同數量上,,這里假設
    # 有10類,,我們就輸出10個num_classes。
    weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES],
                                          stddev=1/192.0, wd=0.0)
    biases = _variable_on_cpu('biases', [NUM_CLASSES],
                              tf.constant_initializer(0.0))
    softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
    _activation_summary(softmax_linear)
  return softmax_linear

這里的邏輯跟之前的在框架上基本一樣,,不同在哪里呢,?首先,這次我們的輸入是彩圖,。學過圖片處理的朋友肯定知道彩圖有3個channel,,而之前MNIST只是單個channel的灰白圖,。所以,,在我們制作feature map的時候,由1個channel map到了32個(注,,那個NUM_CHANNELS是1),。這里我們不過把NUM_CHANNELS給直接寫為了3而已。另外,我們還運用了variable scope,,這是一種很好的方式來界定何時對那些變量進行分享,,同時,我們也不需要反復定義weight和biases的名字了,。

對Loss的定義由loss函數寫明,,其內容無非是運用了sparse_softmax_corss_entropy_with_logits,基本流程同于MNIST,,這里將不詳細描述,。最后,cifar10.py里的train函數雖然邏輯很簡單,,但是也有值得注意的地方,。代碼如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def train(total_loss, global_step):
  '''Train CIFAR-10 model.
  Create an optimizer and apply to all trainable variables. Add moving
  average for all trainable variables.
  Args:
    total_loss: Total loss from loss().
    global_step: Integer Variable counting the number of training steps
      processed.
  Returns:
    train_op: op for training.
  '''
  # Variables that affect learning rate.
  num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size
  decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)
  # Decay the learning rate exponentially based on the number of steps.
  lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE,
                                  global_step,
                                  decay_steps,
                                  LEARNING_RATE_DECAY_FACTOR,
                                  staircase=True)
  tf.scalar_summary('learning_rate', lr)
  # Generate moving averages of all losses and associated summaries.
  loss_averages_op = _add_loss_summaries(total_loss)
  # Compute gradients.
  # control dependencies的運用。這里只有l(wèi)oss_averages_op完成了
  # 我們才會進行gradient descent的優(yōu)化,。
  with tf.control_dependencies([loss_averages_op]):
    opt = tf.train.GradientDescentOptimizer(lr)
    grads = opt.compute_gradients(total_loss)
  # Apply gradients.
  apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
  # Add histograms for trainable variables.
  for var in tf.trainable_variables():
    tf.histogram_summary(var.op.name, var)
  # Add histograms for gradients.
  for grad, var in grads:
    if grad is not None:
      tf.histogram_summary(var.op.name + '/gradients', grad)
  # Track the moving averages of all trainable variables.
  variable_averages = tf.train.ExponentialMovingAverage(
      MOVING_AVERAGE_DECAY, global_step)
  variables_averages_op = variable_averages.apply(tf.trainable_variables())
  with tf.control_dependencies([apply_gradient_op, variables_averages_op]):
    train_op = tf.no_op(name='train')
  return train_op

這里多出的一些內容為收集網絡運算時的一些臨時結果,,如記錄所有的loss的loss_averages_op = _add_loss_summaries(total_loss)以及對參數的histogram:tf.histogram_summary(var.op.name, var)。值得注意的地方是這里多次地使用了control_dependency概念,,即dependency條件沒有達成前,,dependency內的代碼是不會運行的。這個概念在Tensorflow中有著重要的意義,,這里是一個實例,,給大家很好的闡述了這個概念,建議有興趣的朋友可以多加研究,。至此,,圖片的訓練便到此為止。

那么eval文件是如何評價模型的好壞的呢,?讓我們來簡單的看下eval文件的內容,。我們首先通過evaluate函數中的cifar10.inputs函數得到輸入圖片以及其對應的label,之后,,通過之前介紹的inference函數,,即CNN框架得到logits,之后我們通過tensorflow的in_top_k函數來判斷我們得到的那個logit是否在我們label里,。這里的k被設置為1并對結果做展示以及記錄等工作,。有興趣的朋友可以仔細閱讀這段代碼,這里將不詳細說明,。

至此,,系統(tǒng)完成,我們對于如何建立一個CNN系統(tǒng)有了初步了解,。

    本站是提供個人知識管理的網絡存儲空間,,所有內容均由用戶發(fā)布,,不代表本站觀點。請注意甄別內容中的聯(lián)系方式,、誘導購買等信息,,謹防詐騙。如發(fā)現有害或侵權內容,,請點擊一鍵舉報,。
    轉藏 分享 獻花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約