久久国产成人av_抖音国产毛片_a片网站免费观看_A片无码播放手机在线观看,色五月在线观看,亚洲精品m在线观看,女人自慰的免费网址,悠悠在线观看精品视频,一级日本片免费的,亚洲精品久,国产精品成人久久久久久久

分享

opencv中mat,,cvmat,Iplimage構(gòu)造體定義以及格式互相轉(zhuǎn)換

 學(xué)海無涯GL 2013-04-17

opencv中mat,,cvmat,,Iplimage構(gòu)造體定義以及格式互相轉(zhuǎn)換


opencv中mat,cvmat,,Iplimage結(jié)構(gòu)體定義以及格式互相轉(zhuǎn)換
opencv中常見的與圖像操作有關(guān)的數(shù)據(jù)容器有Mat,,cvMat和IplImage,這三種類型都可以代表和顯示圖像,,但是,,Mat類型側(cè)重于計(jì)算,數(shù)學(xué)性較高,,openCV對(duì)Mat類型的計(jì)算也進(jìn)行了優(yōu)化,。而CvMat和IplImage類型更側(cè)重于“圖像”,opencv對(duì)其中的圖像操作(縮放,、單通道提取,、圖像閾值操作等)進(jìn)行了優(yōu)化。在opencv2.0之前,,opencv是完全用C實(shí)現(xiàn)的,,但是,IplImage類型與CvMat類型的關(guān)系類似于面向?qū)ο笾械睦^承關(guān)系,。實(shí)際上,,CvMat之上還有一個(gè)更抽象的基類----CvArr,這在源代碼中會(huì)常見,。

1. IplImage

opencv中的圖像信息頭,,該結(jié)構(gòu)體定義:  

View Code
typedef struct _IplImage 
{ 
int nSize; 
int ID; 
int nChannels; 
int alphaChannel; 
int depth; 

char colorModel[4]; 
char channelSeq[4]; 
int dataOrder; 
int origin; 
int align; 

int width; 
int height; 

struct _IplROI *roi; 
struct _IplImage *maskROI; 
void *imageId; 
struct _IplTileInfo *tileInfo; 

int imageSize; 
char *imageData; 
int widthStep; 
int BorderMode[4]; 
int BorderConst[4]; 

char *imageDataOrigin; 
} IplImage;

dataOrder中的兩個(gè)取值:交叉存取顏色通道是顏色數(shù)據(jù)排列將會(huì)是BGRBGR...的交錯(cuò)排列。分開的顏色通道是有幾個(gè)顏色通道就分幾個(gè)顏色平面存儲(chǔ),。roi是IplROI結(jié)構(gòu)體,,該結(jié)構(gòu)體包含了xOffset,yOffset,height,width,coi成員變量,,其中xOffset,yOffset是x,y坐標(biāo),coi代表channel of interest(感興趣的通道),,非0的時(shí)候才有效,。訪問圖像中的數(shù)據(jù)元素,分間接存儲(chǔ)和直接存儲(chǔ),,當(dāng)圖像元素為浮點(diǎn)型時(shí),,(uchar *) 改為 (float *): 

View Code
 IplImage* img=cvLoadImage("lena.jpg", 1);
CvScalar s; 
s=cvGet2D(img,i,j); 
cvSet2D(img,i,j,s); 


IplImage* img; //malloc memory by cvLoadImage or cvCreateImage
for(int row = 0; row < img->height; row++)
{
for (int col = 0; col < img->width; col++)
{
b = CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels + 0); 
g = CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels + 1); 
r = CV_IMAGE_ELEM(img, UCHAR, row, col * img->nChannels + 2);
}
}


IplImage* img; //malloc memory by cvLoadImage or cvCreateImage
uchar b, g, r; // 3 channels
for(int row = 0; row < img->height; row++)
{
for (int col = 0; col < img->width; col++)
{
b = ((uchar *)(img->imageData + row * img->widthStep))[col * img->nChannels + 0]; 
g = ((uchar *)(img->imageData + row * img->widthStep))[col * img->nChannels + 1]; 
r = ((uchar *)(img->imageData + row * img->widthStep))[col * img->nChannels + 2];
}
}
 初始化使用IplImage *,是一個(gè)指向結(jié)構(gòu)體IplImage的指針: 
IplImage * cvLoadImage(constchar * filename, int//load images from specified image 
IplImage * cvCreateImage(CvSize size, int depth, int channels); //allocate memory

2.CvMat

首先,,我們需要知道,,第一,在OpenCV中沒有向量(vector)結(jié)構(gòu),。任何時(shí)候需要向量,,都只需要一個(gè)列矩陣(如果需要一個(gè)轉(zhuǎn)置或者共軛向量,則需要一個(gè)行矩陣),。第二,,OpenCV矩陣的概念與我們?cè)诰€性代數(shù)課上學(xué)習(xí)的概念相比,更抽象,,尤其是矩陣的元素,,并非只能取簡(jiǎn)單的數(shù)值類型,可以是多通道的值,。CvMat 的結(jié)構(gòu): 

typedef struct CvMat 
{ 
int type; 
int step; 
int* refcount; 
union {
uchar* ptr;
short* s;
int* i;
float* fl;
double* db;
} data; 
union {
int rows;
int height;
};
union {
int cols; 
int width;
};
} CvMat; 

 創(chuàng)建CvMat數(shù)據(jù): 

View Code
CvMat * cvCreateMat(int rows, int cols, int type); 
CV_INLine CvMat cvMat((int rows, int cols, int type, void* data CV_DEFAULT); 
CvMat * cvInitMatHeader(CvMat * mat, int rows, int cols, int type, void * data CV_DEFAULT(NULL), int step CV_DEFAULT(CV_AUTOSTEP)); 

 對(duì)矩陣數(shù)據(jù)進(jìn)行訪問: 

cvmSet( CvMat* mat, int row, int col, double value);
cvmGet( const CvMat* mat, int row, int col );


CvScalar cvGet2D(const CvArr * arr, int idx0, int idx1); //CvArr只作為函數(shù)的形參void cvSet2D(CvArr* arr, int idx0, int idx1, CvScalar value);
CvMat * cvmat = cvCreateMat(4, 4, CV_32FC1);
cvmat->data.fl[row * cvmat->cols + col] = (float)3.0;


CvMat * cvmat = cvCreateMat(4, 4, CV_64FC1);
cvmat->data.db[row * cvmat->cols + col] = 3.0;
CvMat * cvmat = cvCreateMat(4, 4, CV_64FC1);
CV_MAT_ELEM(*cvmat, double, row, col) = 3.0; 
if (CV_MAT_DEPTH(cvmat->type) == CV_32F)
CV_MAT_ELEM_CN(*cvmat, float, row, col * CV_MAT_CN(cvmat->type) + ch) = (float)3.0; // ch為通道值
if (CV_MAT_DEPTH(cvmat->type) == CV_64F)
CV_MAT_ELEM_CN(*cvmat, double, row, col * CV_MAT_CN(cvmat->type) + ch) = 3.0; // ch為通道值
for (int row = 0; row < cvmat->rows; row++)
{ 
p = cvmat ->data.fl + row * (cvmat->step / 4);
for (int col = 0; col < cvmat->cols; col++) 
{ 
*p = (float) row + col; 
*(p+1) = (float)row + col + 1; 
*(p+2) = (float)row + col + 2; 
p += 3; 
}
}

CvMat * vector = cvCreateMat(1,3, CV_32SC2);CV_MAT_ELEM(*vector, CvPoint, 0, 0) = cvPoint(100,100);

CvMat * vector = cvCreateMat(1,3, CV_64FC4);CV_MAT_ELEM(*vector, CvScalar, 0, 0) = CvScalar(0, 0, 0, 0);
CvMat* M1 = cvCreateMat(4,4,CV_32FC1);
CvMat* M2;
M2=cvCloneMat(M1);

 

3.Mat

Mat是opencv2.0推出的處理圖像的新的數(shù)據(jù)結(jié)構(gòu),,現(xiàn)在越來越有趨勢(shì)取代之前的cvMat和lplImage,相比之下Mat最大的好處就是能夠更加方便的進(jìn)行內(nèi)存管理,,不再需要程序員手動(dòng)管理內(nèi)存的釋放,。opencv2.3中提到Mat是一個(gè)多維的密集數(shù)據(jù)數(shù)組,可以用來處理向量和矩陣,、圖像,、直方圖等等常見的多維數(shù)據(jù)。 

class CV_EXPORTS Mat
{

publicint flags;(Note :目前還不知道flags做什么用的)
int dims; 
int rows,cols; 
uchar *data; 
int * refcount; 
...

};
 

 從以上結(jié)構(gòu)體可以看出Mat也是一個(gè)矩陣頭,,默認(rèn)不分配內(nèi)存,,只是指向一塊內(nèi)存(注意讀寫保護(hù))。初始化使用create函數(shù)或者M(jìn)at構(gòu)造函數(shù),,以下整理自opencv2.3.1 Manual:

Mat(nrows, ncols, type, fillValue]); 
M.create(nrows, ncols, type);
例子:
Mat M(7,7,CV_32FC2,Scalar(1,3)); 
M.create(100, 60, CV_8UC(15)); 
int sz[] = {100, 100, 100}; 
Mat bigCube(3, sz, CV_8U, Scalar:all(0));
double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}};
Mat M = Mat(3, 3, CV_64F, m).inv();
Mat img(Size(320,240),CV_8UC3); 
Mat img(height, width, CV_8UC3, pixels, step); 
IplImage* img = cvLoadImage("greatwave.jpg", 1);
Mat mtx(img,0); // convert IplImage* -> Mat; 
訪問Mat的數(shù)據(jù)元素:
Mat M;
M.row(3) = M.row(3) + M.row(5) * 3; 


Mat M1 = M.col(1);
M.col(7).copyTo(M1); 


Mat M;
M.at<double>(i,j); 
M.at(uchar)(i,j); 
Vec3i bgr1 = M.at(Vec3b)(i,j) 
Vec3s bgr2 = M.at(Vec3s)(i,j) 
Vec3w bgr3 = M.at(Vec3w)(i,j) 


double sum = 0.0f;
for(int row = 0; row < M.rows; row++)
{ 
constdouble * Mi = M.ptr<double>(row); 
for (int col = 0; col < M.cols; col++) 
sum += std::max(Mi[j], 0.);
}


double sum=0;
MatConstIterator<double> it = M.begin<double>(), it_end = M.end<double>();
for(; it != it_end; ++it) 
sum += std::max(*it, 0.);
Mat可進(jìn)行Matlab風(fēng)格的矩陣操作,,如初始化的時(shí)候可以用initializers,zeros(), ones(), eye(). 除以上內(nèi)容之外,Mat還有有3個(gè)重要的方法:
View Code
Mat mat = imread(const String* filename); // 讀取圖像
imshow(conststring frameName, InputArray mat); // 顯示圖像
imwrite (conststring& filename, InputArray img); //儲(chǔ)存圖像

 

4. CvMat, Mat, IplImage之間的互相轉(zhuǎn)換

IpIImage -> CvMat

CvMat matheader;
CvMat * mat = cvGetMat(img, &matheader);

CvMat * mat = cvCreateMat(img->height, img->width, CV_64FC3);
cvConvert(img, mat)
IplImage -> Mat
Mat::Mat(const IplImage* img, bool copyData=false);
例子:
IplImage* iplImg = cvLoadImage("greatwave.jpg", 1);
Mat mtx(iplImg); 
  
 Mat -> IplImage
Mat M
IplImage iplimage = M;
 CvMat -> Mat
Mat::Mat(const CvMat* m, bool copyData=false); 
 Mat -> CvMat
例子(假設(shè)Mat類型的imgMat圖像數(shù)據(jù)存在):
CvMat cvMat = imgMat;/*Mat -> CvMat, 類似轉(zhuǎn)換到IplImage,,不復(fù)制數(shù)據(jù)只創(chuàng)建矩陣頭

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn),。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式,、誘導(dǎo)購買等信息,,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,,請(qǐng)點(diǎn)擊一鍵舉報(bào),。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多