阻抗不連續(xù),,信號在傳輸線末端突然遇到電纜阻抗很小甚至沒有,,信號在這個地方就會引起反射。這種信號反射的原理,,與光從一種媒質(zhì)進入另一種媒質(zhì)要引起反射是相似的,。消除這種反射的方法,就必須在電纜的末端跨接一個與電纜的特性阻抗同樣大小的終端電阻,,使電纜的阻抗連續(xù)。由于信號在電纜上的傳輸是雙向的,,因此,,在通訊電纜的另一端可跨接一個同樣大小的終端電阻。 引起信號反射的另個原因是數(shù)據(jù)收發(fā)器與傳輸電纜之間的阻抗不匹配,。這種原因引起的反射,,主要表現(xiàn)在通訊線路處在空閑方式時,整個網(wǎng)絡(luò)數(shù)據(jù)混亂,。 要減弱反射信號對通訊線路的影響,,通常采用噪聲抑制和加偏置電阻的方法。在實際應(yīng)用中,,對于比較小的反射信號,,為簡單方便,經(jīng)常采用加偏置電阻的方法,。 阻抗匹配(Impedance matching)是微波電子學(xué)里的一部分,,主要用于傳輸線上,,來達至所有高頻的微波信號皆能傳至負(fù)載點的目的,不會有信號反射回來源點,,從而提升能源效益,。 大體上,阻抗匹配有兩種,,一種是透過改變阻抗力(lumped-circuit matching),,另一種則是調(diào)整傳輸線的波長(transmission line matching)。 要匹配一組線路,,首先把負(fù)載點的阻抗值,,除以傳輸線的特性阻抗值來歸一化,然后把數(shù)值劃在史密夫圖表上,。 改變阻抗力 調(diào)整傳輸線 阻抗匹配則傳輸功率大,,對于一個電源來講,單它的內(nèi)阻等于負(fù)載時,,輸出功率最大,,此時阻抗匹配。最大功率傳輸定理,,如果是高頻的話,,就是無反射波。對于普通的寬頻放大器,,輸出阻抗50Ω,,功率傳輸電路中需要考慮阻抗匹配,可是如果信號波長遠遠大于電纜長度,,即纜長可以忽略的話,,就無須考慮阻抗匹配了。阻抗匹配是指在能量傳輸時,,要求負(fù)載阻抗要和傳輸線的特征阻抗相等,,此時的傳輸不會產(chǎn)生反射,,這表明所有能量都被負(fù)載吸收了。反之則在傳輸中有能量損失,。高速PCB布線時,,為了防止信號的反射,要求是線路的阻抗為50歐姆,。這是個大約的數(shù)字,,一般規(guī)定同軸電纜基帶50歐姆,頻帶75歐姆,,對絞線則為100歐姆,,只是取個整而已,為了匹配方便,。 阻抗從字面上看就與電阻不一樣,,其中只有一個阻字是相同的,而另一個抗字呢,?簡單地說,,阻抗就是電阻加電抗,所以才叫阻抗,;周延一點地說,,阻抗就是電阻、電容抗及電感抗在向量上的和,。在直流電的世界中,,物體對電流阻礙的作用叫做電阻,世界上所有的物質(zhì)都有電阻,,只是電阻值的大小差異而已,。電阻小的物質(zhì)稱作良導(dǎo)體,電阻很大的物質(zhì)稱作非導(dǎo)體,,而最近在高科技領(lǐng)域中稱的超導(dǎo)體,,則是一種電阻值幾近于零的東西。但是在交流電的領(lǐng)域中則除了電阻會阻礙電流以外,,電容及電感也會阻礙電流的流動,這種作用就稱之為電抗,,意即抵抗電流的作用,。電容及電感的電抗分別稱作電容抗及電感抗,簡稱容抗及感抗,。它們的計量單位與電阻一樣是歐姆,,而其值的大小則和交流電的頻率有關(guān)系,頻率愈高則容抗愈小感抗愈大,,頻率愈低則容抗愈大而感抗愈小,。此外電容抗和電感抗還有相位角度的問題,,具有向量上的關(guān)系式,因此才會說:阻抗是電阻與電抗在向量上的和,。 阻抗匹配是指負(fù)載阻抗與激勵源內(nèi)部阻抗互相適配,,得到最大功率輸出的一種工作狀態(tài)。對于不同特性的電路,,匹配條件是不一樣的,。 在純電阻電路中,當(dāng)負(fù)載電阻等于激勵源內(nèi)阻時,,則輸出功率為最大,,這種工作狀態(tài)稱為匹配,否則稱為失配,。 當(dāng)激勵源內(nèi)阻抗和負(fù)載阻抗含有電抗成份時,,為使負(fù)載得到最大功率,負(fù)載阻抗與內(nèi)阻必須滿足共扼關(guān)系,,即電阻成份相等,,電抗成份只數(shù)值相等而符號相反。這種匹配條件稱為共扼匹配,。 一,、阻抗匹配的研究 在高速的設(shè)計中,阻抗的匹配與否關(guān)系到信號的質(zhì)量優(yōu)劣,。阻抗匹配的技術(shù)可以說是豐富多樣,,但是在具體的系統(tǒng)中怎樣才能比較合理的應(yīng)用,需要衡量多個方面的因素,。例如我們在系統(tǒng)中設(shè)計中,,很多采用的都是源段的串連匹配。對于什么情況下需要匹配,,采用什么方式的匹配,,為什么采用這種方式。 例如:差分的匹配多數(shù)采用終端的匹配,;時鐘采用源段匹配,; 1、串聯(lián)終端匹配 串聯(lián)終端匹配的理論出發(fā)點是在信號源端阻抗低于傳輸線特征阻抗的條件下,,在信號的源端和傳輸線之間串接一個電阻R,,使源端的輸出阻抗與傳輸線的特征阻抗相匹配,抑制從負(fù)載端反射回來的信號發(fā)生再次反射,。 串聯(lián)終端匹配后的信號傳輸具有以下特點: 相對并聯(lián)匹配來說,,串聯(lián)匹配不要求信號驅(qū)動器具有很大的電流驅(qū)動能力。 選擇串聯(lián)終端匹配電阻值的原則很簡單,,就是要求匹配電阻值與驅(qū)動器的輸出阻抗之和與傳輸線的特征阻抗相等,。理想的信號驅(qū)動器的輸出阻抗為零,實際的驅(qū)動器總是有比較小的輸出阻抗,,而且在信號的電平發(fā)生變化時,,輸出阻抗可能不同。比如電源電壓為+4.5V的CMOS驅(qū)動器,,在低電平時典型的輸出阻抗為37Ω,,在高電平時典型的輸出阻抗為45Ω[4];TTL驅(qū)動器和CMOS驅(qū)動一樣,,其輸出阻抗會隨信號的電平大小變化而變化,。因此,對TTL或CMOS電路來說,,不可能有十分正確的匹配電阻,,只能折中考慮。 鏈狀拓?fù)浣Y(jié)構(gòu)的信號網(wǎng)路不適合使用串聯(lián)終端匹配,,所有的負(fù)載必須接到傳輸線的末端,。否則,接到傳輸線中間的負(fù)載接受到的波形就會象圖3.2.5中C點的電壓波形一樣,??梢钥闯觯幸欢螘r間負(fù)載端信號幅度為原始信號幅度的一半,。顯然這時候信號處在不定邏輯狀態(tài),,信號的噪聲容限很低,。 串聯(lián)匹配是最常用的終端匹配方法,。它的優(yōu)點是功耗小,,不會給驅(qū)動器帶來額外的直流負(fù)載,也不會在信號和地之間引入額外的阻抗,;而且只需要一個電阻元件,。 2、并聯(lián)終端匹配 并聯(lián)終端匹配的理論出發(fā)點是在信號源端阻抗很小的情況下,,通過增加并聯(lián)電阻使負(fù)載端輸入阻抗與傳輸線的特征阻抗相匹配,,達到消除負(fù)載端反射的目的。實現(xiàn)形式分為單電阻和雙電阻兩種形式,。 并聯(lián)終端匹配后的信號傳輸具有以下特點: 在實際的電路系統(tǒng)中,,芯片的輸入阻抗很高,因此對單電阻形式來說,,負(fù)載端的并聯(lián)電阻值必須與傳輸線的特征阻抗相近或相等,。假定傳輸線的特征阻抗為50Ω,則R值為50Ω,。如果信號的高電平為5V,,則信號的靜態(tài)電流將達到100mA。由于典型的TTL或CMOS電路的驅(qū)動能力很小,,這種單電阻的并聯(lián)匹配方式很少出現(xiàn)在這些電路中,。 雙電阻形式的并聯(lián)匹配,也被稱作戴維南終端匹配,,要求的電流驅(qū)動能力比單電阻形式小,。這是因為兩電阻的并聯(lián)值與傳輸線的特征阻抗相匹配,每個電阻都比傳輸線的特征阻抗大,??紤]到芯片的驅(qū)動能力,兩個電阻值的選擇必須遵循三個原則: 并聯(lián)終端匹配優(yōu)點是簡單易行,;顯而易見的缺點是會帶來直流功耗:單電阻方式的直流功耗與信號的占空比緊密相關(guān);雙電阻方式則無論信號是高電平還是低電平都有直流功耗,。因而不適用于電池供電系統(tǒng)等對功耗要求高的系統(tǒng),。另外,單電阻方式由于驅(qū)動能力問題在一般的TTL,、CMOS系統(tǒng)中沒有應(yīng)用,,而雙電阻方式需要兩個元件,這就對PCB的板面積提出了要求,,因此不適合用于高密度印刷電路板,。 當(dāng)然還有:AC終端匹配;基于二極管的電壓鉗位等匹配方式,。 二,、將信號的傳輸看成軟管送水澆花 2.1、數(shù)位系統(tǒng)之多層板信號線(Signal Line)中,,當(dāng)出現(xiàn)方波信號的傳輸時,,可將之假想成為軟管(hose)送水澆花。一端于手握處加壓使其射出水柱,,另一端接在水龍頭,。當(dāng)握管處所施壓的力道恰好,而讓水柱的射程正確灑落在目標(biāo)區(qū)時,,則施與受兩者皆歡而順利完成使命,,豈非一種得心應(yīng)手的小小成就? 2.2,、然而一旦用力過度水柱射程太遠,,不但騰空越過目標(biāo)浪費水資源,甚至還可能因強力水壓無處宣泄,,以致往來源反彈造成軟管自龍頭上的掙脫,!不僅任務(wù)失敗橫生挫折,而且還大捅紕漏滿臉豆花呢,! 2.3,、反之,當(dāng)握處之?dāng)D壓不足以致射程太近者,,則照樣得不到想要的結(jié)果,。過猶不及皆非所欲,唯有恰到好處才能正中下懷皆大歡喜,。 2.4,、上述簡單的生活細(xì)節(jié),正可用以說明方波(Square Wave)信號(Signal)在多層板傳輸線(Transmission Line,系由信號線,、介質(zhì)層,、及接地層三者所共同組成)中所進行的快速傳送。此時可將傳輸線(常見者有同軸電纜Coaxial Cable,,與微帶線Microstrip Line或帶線Strip Line等)看成軟管,而握管處所施加的壓力,,就好比板面上“接受端”(Receiver)元件所并聯(lián)到GND的電阻器一般,,可用以調(diào)節(jié)其終點的特性阻抗(Characteristic Impedance),使匹配接受端元件內(nèi)部的需求,。 三,、傳輸線之終端控管技術(shù)(Termination) 3.1 、由上可知當(dāng)“信號”在傳輸線中飛馳旅行而到達終點,,欲進入接受元件(如CPU或Meomery等大小不同的IC)中工作時,,則該信號線本身所具備的“特性阻抗”,必須要與終端元件內(nèi)部的電子阻抗相互匹配才行,,如此才不致任務(wù)失敗白忙一場,。用術(shù)語說就是正確執(zhí)行指令,減少雜訊干擾,,避免錯誤動作,。一旦彼此未能匹配時,則必將會有少許能量回頭朝向“發(fā)送端”反彈,,進而形成反射雜訊(Noise)的煩惱,。 3.2 、當(dāng)傳輸線本身的特性阻抗(Z0)被設(shè)計者訂定為28 ohm時,,則終端控管的接地的電阻器(Zt)也必須是28 ohm,,如此才能協(xié)助傳輸線對Z0的保持,,使整體得以穩(wěn)定在28 ohm的設(shè)計數(shù)值,。也唯有在此種Z0 = Zt的匹配情形下,信號的傳輸才會最具效率,,其“信號完整性”(Signal Integrity,,為信號品質(zhì)之專用術(shù)語)也才最好,。 四、特性阻抗(Characteristic Impedance) 4.1 ,、當(dāng)某信號方波,,在傳輸線組合體的信號線中,以高準(zhǔn)位(High Level)的正壓信號向前推進時,,則距其最近的參考層(如接地層)中,,理論上必有被該電場所感應(yīng)出來的負(fù)壓信號伴隨前行(等于正壓信號反向的回歸路徑Return Path),如此將可完成整體性的回路(Loop)系統(tǒng)。該“信號”前行中若將其飛行時間暫短加以凍結(jié),,即可想象其所遭受到來自信號線,、介質(zhì)層與參考層等所共同呈現(xiàn)的瞬間阻抗值(Instantanious Impedance),此即所謂的“特性阻抗”,。是故該“特性阻抗”應(yīng)與信號線之線寬(w),、線厚(t)、介質(zhì)厚度(h)與介質(zhì)常數(shù)(Dk)都扯上了關(guān)系,。 4.2 ,、阻抗匹配不良的后果:由于高頻信號的“特性阻抗”(Z0)原詞甚長,故一般均簡稱之為“阻抗”,。讀者千萬要小心,,此與低頻AC交流電(60Hz)其電線(并非傳輸線)中,所出現(xiàn)的阻抗值(Z)并不完全相同,。數(shù)位系統(tǒng)當(dāng)整條傳輸線的Z0都能管理妥善,,而控制在某一范圍內(nèi)(±10﹪或 ±5﹪)者,此品質(zhì)良好的傳輸線,,將可使得雜訊減少,,而誤動作也可避免。但當(dāng)上述微帶線中Z0的四種變數(shù)(w,、t,、h、 r)有任一項發(fā)生異常,,例如信號線出現(xiàn)缺口時,,將使得原來的Z0突然上升(見上述公式中之Z0與W成反比的事實),而無法繼續(xù)維持應(yīng)有的穩(wěn)定均勻(Continuous)時,,則其信號的能量必然會發(fā)生部分前進,,而部分卻反彈反射的缺失。如此將無法避免雜訊及誤動作了,。例如澆花的軟管突然被踩住,,造成軟管兩端都出現(xiàn)異常,正好可說明上述特性阻抗匹配不良的問題,。 4.3,、 阻抗匹配不良造成雜訊:上述部分信號能量的反彈,將造成原來良好品質(zhì)的方波信號,,立即出現(xiàn)異常的變形(即發(fā)生高準(zhǔn)位向上的Overshoot,,與低準(zhǔn)位向下的Undershoot,以及二者后續(xù)的Ringing),。此等高頻雜訊嚴(yán)重時還會引發(fā)誤動作,,而且當(dāng)時脈速度愈快時雜訊愈多也愈容易出錯,。 |
|