反雪花曲線 讓我們看看在雪花曲線形成的過程中,將加上去的等邊三角形轉(zhuǎn)換一個(gè)方向時(shí)會出現(xiàn)什么情形.(① 原注:雪花曲線是一種幾何分形,,最早是1904年科赫在研究具有無限周長和有限面積的曲線時(shí)采用的.所以它也稱科赫曲線. ) 生成一條雪花曲線是從一個(gè)等邊三角形開始的.把三角形的每條邊等分成三段并在中間的一段向外作小的等邊三角形,,但刪去新三角形位于舊三角形邊上的底.繼續(xù)這個(gè)程序,對每個(gè)等邊三角形的邊再等分成三段,,并在中段向外作更小的等邊三角形,,如此等等,雪花曲線就是在不斷重復(fù)這樣的過程中產(chǎn)生的. 如果我們畫的小等邊三角形不是向外而是向內(nèi),,這樣所生成的曲線稱為反雪花曲線. 像雪花曲線那樣,,反雪花曲線有無限的周長和有限的面積.這個(gè)事實(shí)允許人們能夠?qū)⑺嬙谝粡埣埳隙恢屡艿郊埻饪臻g去. |
|